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METHODOLOGY

PredicTF: prediction of bacterial 
transcription factors in complex microbial 
communities using deep learning
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Rafael Silva‑Rocha3 and Ulisses Nunes da Rocha1*  

Abstract 

Background: Transcription factors (TFs) are proteins controlling the flow of genetic information by regulating cel‑
lular gene expression. A better understanding of TFs in a bacterial community context may open novel revenues for 
exploring gene regulation in ecosystems where bacteria play a key role. Here we describe PredicTF, a platform sup‑
porting the prediction and classification of novel bacterial TF in single species and complex microbial communities. 
PredicTF is based on a deep learning algorithm.

Results: To train PredicTF, we created a TF database (BacTFDB) by manually curating a total of 11,961 TF distributed 
in 99 TF families. Five model organisms were used to test the performance and the accuracy of PredicTF. PredicTF was 
able to identify 24–62% of the known TFs with an average precision of 88% in our five model organisms. We demon‑
strated PredicTF using pure cultures and a complex microbial community. In these demonstrations, we used (meta)
genomes for TF prediction and (meta)transcriptomes for determining the expression of putative TFs.

Conclusion: PredicTF demonstrated high accuracy in predicting transcription factors in model organisms. We pre‑
pared the pipeline to be easily implemented in studies profiling TFs using (meta)genomes and (meta)transcriptomes. 
PredicTF is an open‑source software available at https:// github. com/ mdsufz/ Predi cTF.
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Background
The functional potential of microbial communities can 
be determined by the genetic content of their constituent 
members. However, genetic content alone does not guar-
antee that a given function or enzymatic reaction would 
be performed [1]. Transcription Factor proteins (TFs) 
play a central and critical role in gene regulation in this 
scenario. These proteins are indirectly responsible for 

optimizing proteins and structural RNAs and the subse-
quent levels of metabolites and other properties, ensur-
ing the survival and adaptation of organisms to the most 
diverse types of stress and environmental changes [2]. 
Environmental signals modulate the activity and expres-
sion levels of bacterial TFs (e.g., changes in the oxygen 
condition, temperature, pH or the lack of a specific sub-
strate) [3]. Additionally, for many promoters, combina-
tions of transcription factors work together to integrate 
different signals [2, 4]. TFs can also work with other 
DNA-binding proteins whose primary role is to sculpt 
the bacterial folded chromosome [2, 4]. Knowledge of the 
TFs profile expressed by an organism is the first step to 
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better understand the regulatory network that controls 
protein expression in an organism or a community.

Since TFs may determine when and which genes are 
expressed [1–3], profiling TFs can help understand gene 
expression regulation and build regulatory networks in 
complex microbial communities. Further, defining which 
factors control gene expression may offer insights into 
the mechanisms controlling ecosystem processes and 
even interactions between species of a microbial com-
munity [5]. However, current TF databases are focused 
on single or small groups of genomes. Mostly, these data-
bases are manually curated based on literature evidence 
and pairwise sequence comparison of genomes from 
model organisms. Examples of these databases include 
RegulonDB for Escherichia coli K-12 [6], DBTBS for 
Bacillus subtilis [7], FlyBase for Drosophila [8], and FTFD 
for fungal species [9]. DBD [10] is a database generated 
from the prediction of TFs from 150 sequenced genomes 
across the tree of life. Unfortunately, DBD has not been 
updated for more than nine years.

One of the primary goals in manipulating microbiomes 
for ecological and biotechnological applications is to con-
trol the outcome of their functions [11]. As TFs are key 
to potentially controlling which genes are expressed, one 
of the best ways to study and understand gene regula-
tion in a microbiome may be to profile its TFs. To date, 
only a few tools such as P2TF [12] and DeepTFactor 
[13] have been developed to predict and classify bacte-
rial TFs. P2TF [12] performs domain analysis of each 
protein sequence using RPS-BLAST. TF candidates 
are selected if they present an e-value below 0.01 and a 
minimum alignment coverage of 50% for each domain 
length. DeepTFactor [13] employs convolutional neural 
networks to extract features from an embedded matrix 
(generated from a protein sequence) and predict if a 
given protein sequence is a transcription factor or not. 
This tool showed higher specificity rates when compared 
to P2TF [13].

Deep learning approaches have been used to predict 
DNA sequence affinities [14] and identify TF-binding 
sites in humans [15]. Although deep learning has been 
used in gene regulation, it has rarely been used to predict 
bacterial TFs. Further, the need for a user-friendly tool 
for predicting TFs that could assist in gene regulation 
analysis motivated the development of PredicTF. Here, 
we constructed a robust database for bacterial transcrip-
tional factors (BacTFDB) that was used to train our deep 
learning model. PredicTF was evaluated by assessing 
its ability to predict known and described TFs in model 
organisms accurately. PredicTF is a deep learning tool 
able to predict and annotate TFs in (meta)genomes from 
full protein-length sequences and can be found at https:// 
github. com/ mdsufz/ Predi cTF.

Results and discussion
PredictTF is a command-line software for the predic-
tion of novel transcription factors from genomic and 
metagenomic data. We created a bacterial transcription 
factor database (BacTFDB) by merging and manually 
curating TFs present in CollectTF [16] and UniProtKB/
Swiss-Prot, a manually annotated and reviewed sec-
tion of the UniProt Knowledgebase (UniProtKB) [17]. 
CollectTF provides well-described and characterized 
in vivo validated TFs, while UniProtKB is a comprehen-
sive resource for protein sequence and annotation data. 
We used BacTFDB to train a deep learning model to pre-
dict new TFs and their families in genomes and metage-
nomes. Five model organisms (Escherichia coli, Bacillus 
subtillis, Pseudomonas fluorescens, Azotobacter vinelan-
dii and Caulobacter crescentus) were used to test the 
performance and accuracy of PredicTF. To this purpose, 
we removed the TFs for each of these model organism’s 
genus from our database to remove the bias of having 
sequences from closely related species during the Pre-
dicTF performance. Additionally, we removed from the 
database the Enterobacteriaceae family to evaluate the TF 
predictions in E. coli. We used the same approach to pre-
dict TFs from a clinical isolate (P. aeruginosa PAO1) and 
a metagenome sample isolated from an anaerobic ammo-
nium oxidation community. We also determined if the 
predicted TFs were expressed in transcriptomes (isolate) 
and metatranscriptomes (microbial community), respec-
tively (Fig. 1).

Database
BacTFDB is a robust bacterial TF database containing 
11,691 TFs amino acid sequences spanning 1049 TF fam-
ilies and 720 different bacterial species. Figure  2 shows 
the database distribution based on TF families and reg-
ulatory elements (Fig. 2a) and the distribution based on 
bacterial species (Fig. 2b). Although BacTFDB comprises 
a significant and diverse amount of TF sequences, Fig. 2 
shows that many TFs families and organisms accumulate 
more than 50 sequences each. We will update BacTFDB 
annually by adding novel entries deposited in UniProtKB 
and CollecTF. BacTFDB was used in PredicTF’s deep 
learning model training, and this model was later used 
to predict new TFs and their families in genomes and 
metagenomes.

Performance and accuracy
We evaluated the performance and accuracy of PredicTF 
through the prediction of TFs in five model organisms (E. 
coli, B. subtillis, P. fluorescens, A. vinelandii and C. cres-
centus). We trained a different PredicTF model for each 
model organism to predict TFs from full protein-length 
sequences (described in the “Materials and methods” 

https://github.com/mdsufz/PredicTF
https://github.com/mdsufz/PredicTF
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session). In parallel, we performed full genome anno-
tation of each model organism using Prokka [18] with 
default parameters (e.g., non-redundant database).

Identification of TFs using PredicTF in the different 
model organisms ranged from 24 to 62% of the proteins 
described as TFs in model organisms’ genomes. The 
accuracy for experimentally validated TFs ranged from 
87.76% and 98.69% (Table 1). Further, PredicTF was able 
to identify putative annotated TFs in the genomes of E. 
coli and B. subtillis with accuracies of 85.71%, and 100%, 
respectively (Table 1). No potentially novel TF was pre-
dicted in the genome of C. crescentus, P. fluorescens and 
A. vinelandii (Table  1). TFs predicted by PredicTF for 
each organism, sorted by TF family, are shown in Fig. 3. 
For all organisms tested, the most predicted TF family 

was LysR, which  represents the most abundant type of 
transcriptional regulator in the prokaryotic kingdom, and 
OmpR/PhoB, a global transcriptional regulator impli-
cated in the control of various cellular processes and 
functions in many Gram-negative bacteria. The degree 
of accuracy obtained by PredicTF suggests that the deep 
learning strategy used is promising for the prediction of 
TFs in genomic or metagenomic data of bacterial spe-
cies. PredicTF performance and accuracy can be fur-
ther improved by expanding the number and diversity 
of sequences present in BacTFDB. As BacTFDB will be 
updated yearly, we expect to improve TF identification 
with every update.

PredicTF showed an average precision, recall, and 
F1 scores of 0.88, 0.40, and 0.54, while Prokka showed 
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Fig. 1 PredicTF workflow and testing. We collected publicly available data on TFs from two different databases: CollecTF and UniProtKB. After 
removing redundancies and filtering TFs well characterized, this data (BacTFDB) was used to train a deep learning model to predict new TFs and 
their families. Five model organisms (Escherichia coli, Bacillus subtillis, Pseudomonas fluorescens, Azotobacter vinelandii and Caulobacter crescentus) 
were used to test the accuracy of PredicTF. Later, we used the same approach to predict TFs from an isolate (P. aeruginosa) and mapped TFs 
predicted in transcriptomics data (P. aeruginosa and mutants in two experimental conditions). Finally, we used our tool to predict TF in complex 
communities (metagenome) and mapped these TFs in their respective meta‑transcriptomes
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Fig. 2 Database composition: Transcription Factor Database (BacTFDB) distribution. A Database distribution based on the TFs and B regulatory 
elements families and organisms species. These graphics show only families with up to 50 sequences and only organisms that contributed with 
more than 50 sequences

Table 1 PredicTF performance, accuracy for experimentally validated Transcription Factors (Accuracy EV), and accuracy for putative 
Transcription Factors (Accuracy PU) in genomes of model organisms. We removed the sequences from the genus and/or family of 
the different model organisms from our TF database (BacTFDB) before model training to reduce the chances of false positives (i.e., the 
presence of identical sequences in the training dataset)

a Performance was calculated by the ratio of the total number of TFs predicted by PredicTF (Predicted TFs) to the total number of proteins annotated as TFs in NCBI 
(Annotated TFs) multiplied by 100
b Accuracy EV was determined by the ratio of the total number of TFs predicted by PredicTF in agreement with NCBI annotation (TFs predicted correctly) to the total 
number of TFs predicted by PredicTF (TFs predicted) multiplied by 100
c PrecicTF Model used for the prediction of TF to the specific organism
d Accuracy TU was determined by the total number of putative TFs predicted correctly divided by putative TFs predicted multiplied by 100; Putative TFs predicted 
correctly is the total number of putative TFs predicted correctly by PredicTF in agreement with NCBI annotation; and, Putative TFs predicted is the total number of putative 
TFs predicted by PredicTF
e Currently there are no putative annotated TFs described in the genome of C. crescentus, P. fluorescens and A.vinelandii

Organism Performancea  (%) Accuracyb  EVb (%) Modelc Accuracy  PUd

E. coli k12 33.33 94.44 PredicTF‑no‑ Escherichia 85.71

E. coli k12 31.27 95.12 PredicTF‑no‑ Enterobacteriaceae 85.71

B. subtillis 24.26 87.76 PredicTF‑no‑ Bacillus 100

C. crescentus 34.36 96.00 PredicTF‑no‑ Caulobacter ‑e

P. fluorescens 46.44 98.69 PredicTF‑no‑ Pseudomonas ‑

A.vinelandii 62.28 98.43 PredicTF‑no‑ Azotobacter ‑
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an average of 0.93, 0.83, and 0.88, respectively (Addi-
tional file 4: Table S1). However, recall using Prokka is 
twice of that observed for PredicTF. A possible expla-
nation for lower precision and recall rates using Pre-
dicTF is derived from the removal of species-specific 
TFs for each model organism (which was done to avoid 
overfitting).

Although PredicTF showed lower recall rates in 
the model organisms, it presented fewer false posi-
tives when compared to Prokka for four out of the five 
model organisms tested (Additional file  4: Table  S1). 
PredicTF C. vibrioides (strain NA1000/CB15N) false 
positives were 3 times fold lower when compared to 
Prokka. E. coli (strain K-12 sub strain MG1655), B. 
subtilis (strain 168), and P. fluorescens (strain F113) 
PredicTF’s results were, respectively, 46.7%, 21.0%, 
and 9.1% fewer than those observed through Prokka. 
Prokka only showed fewer false positives than Pre-
dicTF for the isolate A. vinelandii (strain DJ / ATCC 
BAA-1303), respectively 46.5% (Additional file  4: 
Table  S1). Further, extracting the predicted TFs from 
Prokka results requires manual labor. In contrast, pre-
dicted TFs using PredicTF are presented in a clear 
table (e.g., https:// github. com/ mdsufz/ Predi cTF/ blob/ 
master/ Examp les/ predi ctf_ output. txt). Neverthe-
less, we expect to improve PredicTF’s performance by 
increasing sequences in future updates to BacTFDB.

Mining and predicting TFs in genomes and transcriptomes 
from a bacterial isolate using PredicTF
PredicTF was used to predict TFs on the genome of P. 
aeruginosa PAO1 and these TFs were mapped in tran-
scriptomes from the same isolate [19]. PredicTF pre-
dicted a total of 199 TFs in the P. aeruginosa PAO1 
genome shown in Additional file  1: Fig. S1 A by a fam-
ily’s distribution graphic. These 199 TFs were mapped 
in the transcriptomic data of a reference of P. aeruginosa 
PAO1. Initially, the mapping was done in the transcrip-
tome of P. aeruginosa PAO1 cultured in LB media. Using 
this strategy, we were able to map 69 of the 199 predicted 
TFs to the transcriptomes under the experimental condi-
tions carried out by Hwang and Yoon, 2019 (Additional 
file 1: Fig. S1 B) [19]. Next, the mappings were done for 
another three clinical mutants of P. aeruginosa PAO1 
(Y82, Y71, Y89) cultured in LB media (absence of an anti-
biotic cocktail) (Additional file 2: Fig. S2 A, C and F). The 
TFs family’s distribution for each P. aeruginosa PAO1 
mutant cultured in the presence of antibiotic cocktail is 
shown in the supplementary data (Additional file 2: Fig. 
S2 B, D, and F). These results demonstrate the potential 
of PredicTF in mapping regulatory elements in bacterial 
genomes and the use of this tool to map and compare 
TFs profiles under different environmental conditions. 
Nevertheless, further studies are necessary to validate if 
the predicted TFs are indeed transcription factors.
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Mining and predicting TFs in a metagenome 
and metatranscriptome using PredicTF
PredicTF was used to profile TFs in one metagenome 
recovered from an anaerobic ammonium oxidation 
community [20] followed by mapping the predicted TFs 
in metatranscriptomes recovered from the same com-
munity (metatranscriptomes accession numbers can be 
found in Additional file  5: Table  S2). We predicted 792 
TFs (Fig.  4a) in LAC_MetaG_1, an anaerobic ammo-
nium oxidizing microbial community from an anam-
mox membrane bioreactor [20]. These 792 TFs belong 
to 27 different TF families (Fig.  4a). They are related to 
the regulation of functions such as the oxygen limita-
tion response and late symbiotic functions (NarL/FixJ), 
phosphate regulon response (OmpR/PhoB), transcrip-
tional activator for nitrogen-regulated promoters (NtrC/
DctD), and ferric uptake regulation (Fur). To determine 
how a traditional annotation pipeline identifies potential 
TFs, we used Prokka [18]. This tool was able to identify 
1815 ORFs (Additional file 6: Table S3). PredicTF can be 
used with no previous knowledge regarding transcrip-
tion factors, it is fast, and it requires low memory when 
compared to Blast-based annotation. It indicates only 
results of TFs with a specific TF family annotation. On 
the other hand, to identify TFs using Prokka, one would 
need specialized training to mine the general annotation. 

Therefore, scientists with a general microbiology back-
ground may take a long time to undergo this task. Fur-
ther, Prokka does not indicate the TF families of the 
putative annotated TFs. Time is also a drawback of using 
Prokka to mine TFs. We calculated we needed over 400 h 
to mine one single metagenomic library; in comparison, 
PredicTF needed 2  h for the same task. Also, users can 
quickly generate new models for predicting TFs once 
BacTFDB is updated.

Next, the 792 TFs were mapped in 11 metatranscrip-
tomes collected on different dates from the same biore-
actor where the metagenome was recovered Additional 
file 7: Table S4, Fig. 4b). Clustering analysis demonstrated 
the presence of five different groups of TFs families based 
on the number of transcription factor families expressed 
in each library (Fig. 4b). It is interesting to note that the 
two most abundant clusters in the heatmap are directly 
related to the oxygen limitation caused by the anaerobic 
ammonium oxidizing cultivation. In a bioreactor where 
oxygen is limited, an increase in nitrogen and phosphate 
is expected. The presence of N and P diverts the metab-
olism of the microbial community towards the produc-
tion of regulators (TFs) that help maintain community 
stability. Clustering analysis can be helpful to demon-
strate the similarity between metatranscriptomic librar-
ies based on the occurrence of TFs. This strategy can be 

Fig. 4 Recovery of novel Transcription Factors in one metagenome and eleven metatranscriptomes. a PredicTF predicted 792 TFs were predicted 
in one anaerobic ammonium oxidizing microbial communities from anammox membrane bioreactor (LAC_MetaG_1) and were grouped by family. 
b Using 792 TFs predicted in one metagenome, we mapped these TFs for 11 metatranscriptomes of reference from the same bioreactor where the 
metagenome was recovered
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useful to compare the profiles of TFs expressed in differ-
ent environmental situations (comparing libraries with 
different metadata), creating patterns of TFs expression. 
The exploration of TF profiling in microbial communi-
ties (metagenomes or metatranscriptomes) will allow the 
exploration of regulation within complex microbial com-
munities. Further, the recovery of metagenome-assem-
bled genomes is becoming standard in metagenomics 
studies [21–23]. The use of PredicTF together with the 
recovery of metagenome-assembled genomes will allow 
the exploration of species-specific molecular mecha-
nisms involved in the regulation of different ecosystem 
processes.

Conclusions
A better understanding of TFs in a bacterial community 
context opens avenues for the exploration of gene regu-
lation in ecosystems where bacteria play a key role. Our 
deep learning strategy was based on a novel and robust 
TF bacterial database (BacTFDB) with over 11 thousand 
TFs and their respective families. BacTFDB is a unique 
resource for studies involving TFs, and it provided the 
data to train a model within PredicTF capable of predict-
ing novel TFs from genomes and metagenomes. PredicTF 
is the first pipeline designed to predict and annotate TFs 
in complex microbial communities. The prediction of 
TFs can provide information for those aiming to study 
and understand bacterial communities within a context 
of gene regulation. We also demonstrated that PredicTF 
could be used to predict novel TFs in metagenomes and 
metatrascriptomes, creating the potential profile for reg-
ulatory elements in complex microbial communities.

PredicTF is a user-friendly and open-source pipeline 
able to predict and annotate TFs in genomes and metage-
nomes and can be found at https:// github. com/ mdsufz/ 
Predi cTF.

Materials and methods
BacTFDB: Bacterial transcription factor data base
We collected data from two publicly available databases 
to create a novel Bacterial Transcription Factor Data-
base (BacTFDB). Initially, we collected data from Col-
lecTF [16], a well-described and characterized database. 
Since CollecTF does not provide an application program-
ming interface (API) for bulk download, we developed a 
Python code (version 2.7) using the Beautiful Soup 4.4.0 
library to recover the data from CollecTF. With this strat-
egy, we listed 390 TF experimentally validated amino acid 
sequences distributed over 44 TF families. The script can 
be found at https:// github. com/ mdsufz/ Predi cTF.

Additionally, we retrieved TF amino acid sequences 
from UniProtKB using UniProt’s API. We downloaded 
sequences of interest from UniProtKB that belonged to 

the bacteria taxonomy by adding a filter with the key-
words (Transcription factor, transcriptional factor, regu-
lator, transcriptional repressor, transcriptional activator, 
transcriptional regulator). We accessed the UniProtKB 
API on  8th September-2019, and a total of 21.581 TF 
amino acid sequences, with applied filters, were col-
lected. We merged the data collected from CollecTF and 
UniProtKB databases resulting in 21.971 TFs. Next, we 
removed redundant TF entries and TF sequences lacking 
a TF family since PredicTF was also  designed to assign 
a TF family. Finally, we performed a manual inspection 
to remove case sensitivity and the characters associated 
with the database header. The first version of BacTFDB 
contains a total of 11.691 unique TF sequences. A sum-
mary of the information contained in BacTFDB can be 
found in the supplementary data (Additional file  3: Fig. 
S3). To evaluate PredicTF in model organisms, we cre-
ated five subsets of BacTFDB. The description of these 
subsets can be found in the supplementary data (Addi-
tional file 8: Table S5).

Mapping transcription factors using PredictTF
We used the deep learning approach developed by Gus-
tavo and collaborators [24]. Supervised machine learning 
methods are usually performed in three stages: charac-
terization, training, and evaluation. Briefly, the charac-
terization relied on the concept of dissimilarity-based 
classification [25], where sequences are represented and 
featured by their sequence similarity to known genes. 
This deep learning approach also considers both the 
similarity distribution of sequences in the database used 
for training and the best hit. We maintained the same 
parameters as in the study by Gustavo and collabora-
tors [24]. Briefly, The protein sequences used in the deep 
neural network are aligned to the sequences in BacTFDB 
using DIAMOND with very relaxed constraints (10,000 
maximum number of hits, a minimum of 20% identity 
score, and a maximum e-value of 1e−10). Next, the nor-
malized bit score is used to represent the sequence simi-
larity as a distance to known transcription factors, which, 
in turn, is used to populate a feature matrix. The latter 
is used to calculate the identity distance distribution of 
target sequences to all sequences in BacTFDB, which is 
propagated throughout the hidden layers of the neu-
ral network. We set the number of dense hidden layers 
used to propagate the bit score distribution to dense and 
abstract features to four.

Lastly, we calculated the probability of the target 
sequence to each TF family. For more details on the 
deep learning model generation, please see Gustavo et al. 
[24]. The complete set of transcription factors in BacT-
FDB used to train and test the deep learning models, 
and the model itself (defined as PredicTF) are publicly 

https://github.com/mdsufz/PredicTF
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available in (https:// github. com/ mdsufz/ Predi cTF). 
Next, PredicTF was used to predict TFs from full pro-
tein-length sequences in non-model organisms and one 
metagenome. After prediction, the data was mapped to 
transcriptomes and metatranscriptomes from samples 
where we determined the genetic potential.

To ensure that the training and independent test sets 
do not have identical or near-identical examples, we 
trained five different models—one for each model organ-
ism (Additional file 5: Table S2). For each model, the TFs 
affiliated with the respective model organism genus and/
or family were removed before training to avoid overfit-
ting due to the homology of the sequences. PredicTF-no-
Escherichia and PredicTF-no-Enterobacteriaceae were 
trained to predict TFs in E. coli, PredicTF-no-Bacillus 
was trained to predict TFs in B. subtilis, PredicTF-no-
Caulobacter was trained to predict TFs in C. crescentus, 
PredicTF-no-Pseudomonas was trained to predict TFs 
in P. fluorescens and PredicTF-no-Azotobacterial was 
trained to predict TFs in A. vinelandii.

Performance and accuracy calculation
We evaluated PredicTF by calculating accuracy and per-
formance. Performance was calculated by quantifying the 
number of TFs that PredicTF was able to predict divided 
by the number of TFs already described and annotated 
in our model organisms (Additional file  9: Equation  1). 
We determined accuracy by calculating the number of 
TFs correctly predicted divided by the total number of 
TFs predicted by PredicTF in each model organism. We 
divided accuracy into two categories. In the first accu-
racy category, we determined accuracy against experi-
mentally validated TFs (Additional file 9: Equation 2). In 
the second accuracy category, we determined accuracy 
against TFs without experimental validation (Additional 
file 9: Equation 3), putative TFs. The performance, accu-
racy, and accuracy for putative TFs were calculated as the 
ratio of predicted to annotated TFs.Precision, recall, and 
F1-scores equations are shown in Additional file 9: Equa-
tions 4, 5, and 6.

Prediction of transcription factors in model organisms
We selected bacterial species that have been widely stud-
ied as model organisms. Some bacterial species became 
model organisms for TF studies because they are easy to 
maintain and grow in a laboratory setting and manipu-
late in pure culture experiments. Five complete genomes 
from model organisms (E. coli, B. subtillis, P. fluores-
cens, A. vinelandii and C. crescentus) were downloaded 
directly from NCBI. The strains details and accession 
number (RefSeq) for all selected organisms are listed in 
the supplementary data (Additional file  5: Table  S2). By 
evaluating PredicTF using model organisms (Additional 

file 7: Table S4) we extrapolated the performance of our 
deep learning model. Since known TFs for each organism 
were removed from each training dataset, we eliminate 
the possibility of mapping TFs already known and anno-
tated for each of the different species (i.e., avoiding over-
fitting). Performance for putative TFs of PredicTF for the 
selected five model organisms was calculated using the 
equations described in the Additional file 9: Equations).

To have a baseline comparison with a traditional anno-
tation pipeline, we used Prokka [18] to annotate each 
model organism using default parameters.

Prediction of transcription factors in a clinical isolate
We demonstrated the use of PredicTF in a previously 
sequenced P. aeruginosa (PAO1) genome, a clinical 
isolate publicly available in NCBI (accession number 
NC_002516.2). P. aeruginosa PAO1 was selected because 
its genome has been sequenced and because of the avail-
ability of transcriptomes from three clinical mutants of 
PAO1 (Y71, Y82, and Y89) grown in the presence and 
absence of an antibiotic cocktail. The transcriptomes of 
P. aeruginosa PAO1 mutants Y71, Y82, and Y89 are avail-
able in NCBI (Bioproject identifier PRJNA479711) [18]. 
These clinical P. aeruginosa PAO1 mutants were isolated 
from the sputa of three different pneumonia patients. 
Transcriptomes of P. aeruginosa PAO1 wild type and its 
mutants cultured in two different conditions (LB medium 
and LB medium in the presence of antibiotic cocktail) 
have been previously described [19]. We used this data 
to determine the TF profile in these P. aeruginosa PAO1 
mutants grown in two different conditions.

PredicTF was first used to predict TFs in the P. aer-
uginosa PAO1 genome. Next, the predicted TFs were 
mapped to the transcriptomes of the P. aeruginosa PAO1 
mutants Y71, Y82 and Y89 (see later). Further description 
of the mapping of the transcriptomes to the genomes is 
available at https:// github. com/ mdsufz/ Predi cTF. We 
trained the PredicTF model used in this step with the full 
database (BacTFDB). All accession numbers used in this 
work are listed in the supplementary data (Additional 
file 5: Table S2).

Prediction of transcription factors in complex microbial 
communities
To test PredicTF in a complex microbial community, 
we used an anaerobic ammonium oxidizing (anam-
mox) microbial community from an anammox mem-
brane bioreactor metagenome (LAC_MetaG_1) (data 
publicly available at NCBI bioproject via accession 
number PRJNA511011) [20]. According to the devel-
oper’s instructions, we removed short and low-quality 
reads using Trim Galore—v0.0.4 dev [26]. Over 50 mil-
lion reads survived this step and were assembled using 

https://github.com/mdsufz/PredicTF
https://github.com/mdsufz/PredicTF


Page 9 of 11Oliveira Monteiro et al. Environmental Microbiome            (2022) 17:7  

the de novo assembler metaSPADES—v3.12.0 [27]. The 
assembly was translated from nucleotide to amino acid 
sequences, considering all possible translation frames, 
using emboss transeq [28]. The translated assembly was 
then used as input to predict transcription factors using 
PredicTF. Then, we extracted the region from each pre-
dicted TF. These putative TFs were later used when map-
ping TFs to metatranscriptomes.

We checked if the putative TFs predicted in the 
metagenomes were transcribed by checking if the 
metatranscriptomic libraries were mapping to those 
regions. The metatranscriptomic and metagenomic 
libraries used in this step belonged to the same biore-
actor. These metatranscriptomes are publicly available 
at the European Nucleotide Archive under the acces-
sion numbers SRR7091385, SRR7523233, SRR7523244, 
SRR7523245, SRR7091400, SRR7091401, SRR7091381, 
SRR7091402, SRR7091406, SRR7523243, SRR7523246. 
These 11 metatranscriptomes were used to demon-
strate the effectiveness of the pipeline and to indicate the 
potential of PredicTF to profile transcription factors in 
complex microbial communities. All accession numbers 
used in this work are listed in the supplementary data 
(Additional file 5: Table S2).

To have a baseline comparison with a traditional 
annotation pipeline, we used Prokka [18] to annotate 
the same anammox membrane bioreactor metagenome 
(LAC_MetaG_1). We mined the annotation by hand with 
the knowledge of scientists specialized in Transcription 
Factors. We did not determine the families as this work 
would need to be done for every single hit individually 
using the output of Prokka.

Mapping transcription factors to transcriptomes 
and metatranscriptomes
Each transcriptomic and metatranscriptomic library 
was quality controlled by removing short and low-
quality reads using Trim Galore—v0.0.4 dev [26]. After 
quality checking, the seven transcriptomic librar-
ies for the P. aeruginosa PAO1 wild type and mutants 
showed at least 26 million paired-end reads. The 11 
metatranscriptomic libraries yielded over 50 million 
reads per library after quality check. After, the remain-
ing transcriptomic and metatranscriptomic reads 
were mapped to their respective assembled genome 
or metagenome using Bowtie2—v2.3.0 [29]. The num-
ber of reads mapped, and the regions covered was 
extracted using SAMTools—v1.9 [30] and python 2.7. 
The regions of the genome or metagenome assembly 
covered by transcriptomic or metatranscriptomic reads 
were then crossed-referenced with the regions of their 
respective assembly, which PredicTF assigned as puta-
tive TFs creating a TF profile for each transcript and 

metatranscriptome. A detailed description of how we 
mapped the RNA-seq data to their respective genome 
or metagenome assembly can be found at the PredicTF 
github (https:// github. com/ mdsufz/ Predi cTF).

Abbreviations
TFs: Transcription factors; BacTFDB: Bacterial Transcription Factor Data Base; 
TFBSs: Transcription factor binding sites; anammox: Anaerobic ammonium 
oxidizing.
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Additional file 1: Fig. S1. Transcription factor (TF) families predicted for 
Pseudomonas aeruginosa PAO1 genome (accession number NC_002516.2) 
(18) using PredicTF and their mapping to P. aeruginosa PAO1 growing in LB 
medium. A) A total of 199 TFs distributed in 25 TF families were predicted 
in the P. aeruginosa PAO1 genome. B) These 199 TFs were mapped in the 
transcriptomic data of a reference of P. aeruginosa PAO1 (Bioproject identi‑
fier PRJNA479711) (18). Initially, we did the mapping in the transcriptome 
of P. aeruginosa PAO1 cultured in LB media. Using this strategy, we were 
able to map 69 of the 199 predicted TFs to the transcriptome (PDF 73 kb)

Additional file 2: Fig. S2. Transcription Factor (TF) family profiles in three 
Pseudomonas aeruginosa PAO1 mutants. After the prediction of Transcrip‑
tion Factors (TFs) using P. aeruginosa PAO1 genome, we mapped transcrip‑
tomes from three P. aeruginosa PAO1 mutants (Y82, Y71, Y89) cultured in 
LB media (A, C, and F). After, we did the mapping for each P. aeruginosa 
PAO1 mutant cultured in the presence of an antibiotic cocktail (B, D, and 
E). P. aeruginosa PAO1 mutant Y82 (A, B); P. aeruginosa PAO1 mutant Y71 (C, 
D); P. aeruginosa PAO1 mutant Y89 (E, F)

Additional file 3: Fig. S3. Bacterial Transcription Factor Data Base (Bac‑
TFDB) was created from two publicly available databases. We collected 
390 TFs from CollecTF and 21.581 from UniProtKB (accessed 8‑Sep‑2019), 
accumulating 21.581 Transcription Factor (TF) amino acid sequences. We 
merged the data from CollecTF and UniProtKB databases resulting in a 
total of 21.971 TFs amino acids. We removed redundant TF entries, and 
since PredicTF was also designed to assign TF family, TF sequences lacking 
a TF family were removed. Finally, we performed a manual inspection to 
remove misleading spelling, case sensitivity, and characters associated 
with the database header. The final database (BacTFDB) contains a total of 
11.691 TF unique sequences

Additional file 4: Table S1. Confusion matrices, precision, recall, and 
F1‑scores for prediction of transcription factors in each model organism 
using PredicTF and Prokka.

Additional file 5: Table S2. The accession numbers for the five model 
organisms, Pseudomonas aeruginosa PAO1 genome and transcriptomes, 
and Complex Microbial Communities used to validate and test PredicTF.

Additional file 6: Table S3. Transcription factors from the metagenome 
of an anaerobic ammonium oxidizing microbial community from an 
anammox membrane bioreactor (LAC_MetaG_1) that we mined and 
hand‑curated from a general annotation generated using Prokka (18).

Additional file 7: Table S4. The number of Transcription Factors (TFs) 
per TF family mapped to each of the 11 metatranscriptomes of reference 
from the same bioreactor where the metagenome (accession number 
PRJNA511011, NCBI) used to predict the putative TFs was collected. Their 
European Nucleotide Archive accession numbers represent the different 
metatranscriptomes.
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Additional file 9: Equations. The different equations we used to calculate 
PredicTF’s accuracy and performance.
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