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Microbial mats in the Turks and Caicos
Islands reveal diversity and evolution of
phototrophy in the Chloroflexota order
Aggregatilineales
Lewis M. Ward1*, Usha F. Lingappa2, John P. Grotzinger2 and Woodward W. Fischer2

Abstract

Genome-resolved metagenomic sequencing approaches have led to a substantial increase in the recognized diversity of
microorganisms; this included the discovery of novel metabolic pathways in previously recognized clades, and has enabled a
more accurate determination of the extant distribution of key metabolisms and how they evolved over Earth history. Here,
we present metagenome-assembled genomes of members of the Chloroflexota (formerly Chloroflexi or Green Nonsulfur
Bacteria) order Aggregatilineales (formerly SBR1031 or Thermofonsia) discovered from sequencing of thick and expansive
microbial mats present in an intertidal lagoon on Little Ambergris Cay in the Turks and Caicos Islands. These taxa included
multiple new lineages of Type 2 reaction center-containing phototrophs that were not closely related to
previously described phototrophic Chloroflexota—revealing a rich and intricate history of horizontal gene
transfer and the evolution of phototrophy and other core metabolic pathways within this widespread phylum.

Background
Most of the known diversity of phototrophic Chloroflex-
ota (formerly Chloroflexi or Green Nonsulfur Bacteria)
was derived from isolation- and sequencing-based efforts
primarily on hot spring microbial mats (e.g. [35, 42]).
However microbial communities with diverse members
of phototrophic Chloroflexota are commonly found in
other environments, including coastal marine environ-
ments and carbonate platforms (e.g. [36]). While
cultivation-based efforts have yet to isolate phototrophic
Chloroflexota from outside of the Chloroflexia class in
pure culture [35], genome-resolved metagenomic se-
quencing has made substantial progress in uncovering
novel diversity of phototrophic lineages that have

otherwise remained inaccessible and unknown (e.g. [6,
19, 42, 48]).
The Turks and Caicos Islands occur at the southern end

of the Bahamian archipelago. The Caicos platform (Fig. 1)
is a contiguous shallow (< 5m), grainy carbonate platform
situated in the trade winds (mean wind velocity of 8m/s
from the east), and has a dry climate with net evaporation
in excess of precipitation [10]. We studied microbial mats
found throughout Little Ambergris Cay—a small ~ 6 km-
long uninhabited island near the southern margin of the
platform. Little Ambergris Cay contains a bedrock rim,
formed by amalgamated cemented beach ridges and fossil
eolian dunes, enclosing a tidal lagoon with a dozen large
cut channels that communicate between the lagoon with
well-mixed platformal waters. The typical diurnal tidal
range is ~ 0.3m. Polygonal microbial mats occur within
the lagoon amongst sparse black mangroves. These mats
are inundated daily by high tides. The mats are dissected
into individual decimeter-sized heads that take on an
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upward domed shape by mature polygons with 60° angles
created by episodic desiccation. On average twice a decade,
tropical storms transport ooid sediment forming across the
platform into the lagoon and onto the mats [37]—creating a
mode of lamination in addition to that created by microbial
succession. Dominant mat building taxa are a thickly-
sheathed, heterocystous cyanobacterium of the genus Scyto-
nema and the thin-walled cyanobacterium, Halomicronema
[36]. The mats host a rich sulfur cycling community (Gomes
et al.: Microbial mats on Little Ambergris Cay, Turks and
Caicos Islands: taphonomy and the selective preservation of
biosignatures/submitted). Deeper layers of the mat contain
abundant purple/red- and green- colored microbes visible in
exposed cross sections of the mats (Fig. 1); these have been
confirmed by 16S rRNA gene amplicon sequencing to in-
clude diverse and abundant phototrophs in the Proteobac-
teria and Chloroflexota phyla [36].
In order to better characterize the diversity and evolu-

tionary histories of phototrophic Chloroflexota, we recov-
ered five metagenome-assembled genomes (MAGs) from
genome-resolved metagenomic sequencing of microbial
mats from the Turks and Caicos Islands which include
novel phototrophic lineages of Chloroflexota not closely re-
lated to previously described phototrophs.

Methods
Methods for metagenomic sequencing and genome bin-
ning followed those published previously [45, 46] and
described briefly here. Samples of microbial mat were
collected using an ethanol-sterilized spatula (~ 0.25 cm3

of material per sample). Immediately after sampling,
cells were lysed and DNA preserved with a Zymo Terra-
lyzer BashingBead Matrix and Xpedition Lysis Buffer.
Lysis was achieved by attaching tubes to the blade of a
cordless reciprocating saw (Black & Decker, Towson,
MD) and operating for 1 min. Following return to the
lab, bulk environmental DNA was extracted and purified
with a Zymo Soil/Fecal DNA extraction kit. Purified
DNA was submitted to SeqMatic LLC (Fremont, CA)
for library preparation and sequencing via Illumina
NextSeq.
Raw sequence reads from four samples were co-assembled

with MegaHit v. 1.02 [22] and genome bins constructed
based on nucleotide composition and differential coverage
using MetaBAT [18], MaxBin [50], and CONCOCT [1] prior
to dereplication and refinement with DAS Tool [32] to pro-
duce the final bin set. Annotation was performed using
RAST [2]. Genome completeness and redundancy/contam-
ination was estimated with CheckM [28], and likelihood of

Fig. 1 Geological context of the microbial mats from which the genomes in this study were recovered. a location of the Turks and Caicos Islands.
b location of Little Ambergris Cay. c microbial mats and mangroves in tidal flat. d cross section of microbial mat showing pigmented layers
containing phototrophic bacteria
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presence or absence of metabolic pathways was estimated
with MetaPOAP [43]. Visualization of the presence of anno-
tated metabolic pathways was done via KEGG-decoder [13]
following annotation of proteins sequences by GhostKOALA
[17]. Taxonomic assignments were verified with GTDB-Tk
[8, 29].
Protein sequences used in analyses (see below) were

identified locally with the tblastn function of BLAST +
[7], aligned with MUSCLE [11], and manually curated in
Jalview [49]. Positive BLAST hits were considered to be
full length (e.g. > 90% the shortest reference sequence
from an isolate genome) with e-values better than 1e− 20.
Phylogenetic trees were calculated using RAxML [33] on
the Cipres science gateway [25]. Transfer bootstrap sup-
port values were calculated by BOOSTER [20], and trees
were visualized with the Interactive Tree of Life viewer
[21]. Concatenated ribosomal protein alignments were
built following methods from Hug et al. [16]. Evolution-
ary histories of vertical versus horizontal inheritance of
metabolic genes were inferred by comparison of the top-
ologies of organismal and metabolic protein phylogenies
[9, 42, 47, 48].

Results
Illumina NextSeq sequencing of four samples from the
Turks and Caicos Islands produced a total of 243,782,
642 reads of 151 nucleotides. These were coassembled
into 3,464,316 contigs totaling 2,510,159,592 nucleotides.
Binning of this dataset produced five medium- to high-
quality genomes (according to accepted quality stan-
dards, [5]) which could be taxonomically classified by
GTDB-Tk into the lineage of the Chloroflexota phylum
currently annotated as order SBR1031 (Table 1, Fig. 2).
Other genomes previously assigned to this clade in-
cluded those proposed as the class Candidatus Thermo-
fonsia [42] along with an isolate for which the order
Aggregatilineales was recently proposed [26]. Following
the isolation and characterization of Aggregatilinea lenta
[26], and the clustering of these organisms into an
order-level clade by GTDB-Tk, we propose the reassign-
ment of the organisms previously described as “Candi-
datus Thermofonsia” into the order Aggregatilineales.
This order is primarily made up of nonphototrophic or-
ganisms but also contains some members with full suites
of phototrophy genes, which appear to have been de-
rived via horizontal gene transfer from members of the
Chloroflexia class of Chloroflexota [42].

Discussion
The environmental range exhibited by known members
of the SBR1031/Aggregatilineales was previously some-
what limited. Previously recovered genomes of members
of this group were sourced from hot spring environ-
ments [42, 46], with the single known isolate isolated

from subseafloor sediments [26]. 16S rRNA sequences of
SBR1031 have been recovered from more diverse envi-
ronments including hot springs [39, 40], contaminated
soils [24], and wastewater [3]. Recovery of MAGs be-
longing to this order from carbonate tidal flats therefore
expands the available genomic diversity and known
range of Aggregatilineales to environments that also
have an extensive geological record.
The SBR1031 MAGs reported here encoded similar sets

of functional genes to previously reported members of this
order (Fig. 3). Like previously described members of
SBR1031/Aggegatilineales (e.g. [42]), these organisms en-
code aerobic respiration via an A-family heme copper O2

reductase, and contain both a bc complex and an alterna-
tive complex III [42]; based on these electron transport
chain complexes, it is likely that these organisms are at
least facultatively aerobic. All genomes described here (ex-
cept for TC_22, the least complete genome) also encode a
bd oxidase (O2 reductase) capable of functioning for O2

detoxification or respiration at low O2 concentrations
[4]—a trait observed in both aerobic and anaerobic mem-
bers of the Anaerolineae class (e.g. [14, 27, 38, 42]).
Of the five SBR1031/Aggregatilineales genomes re-

ported here, three encode partial or full components
necessary for phototrophic energy transduction via a
Type 2 reaction center. TC_71 and TC_152 encode
complete sets of marker genes for phototrophy, includ-
ing those encoding PufL and PufM subunits of the re-
action center and bacteriochlorophyll synthesis (e.g.
BchX, BchY, and BchZ). MetaPOAP False Positive esti-
mates for phototrophy in these organisms were low (<
0.04), suggesting that it is very unlikely that these genes
were recovered as a result of contamination in the
MAGs. The TC_22 genome encodes the BchXYZ com-
plex but did not recover genes for PufL or PufM; Meta-
POAP False Positive and False Negative estimates were
similarly low (~ 0.04) for this genome, and based on
this analysis it remains unclear whether or not this or-
ganism contains a complete set of genes for phototro-
phy. However, the gene cluster encoding BchX, BchY,
and BchZ in TC_22 is located on the end of a contig,
and the region of the chromosome syntenous to that
encoding PufL and PufM in other phototrophic Chloro-
flexota (e.g. 6.5 kb upstream of bchX, bchY, and bchZ in
TC_152) is missing in the TC_22 genome. Based on
this, it is possible that this organism hosts a complete
phototrophy pathway but that some genes simply were
not recovered in the MAG. Like previously described
phototrophs in SBR1031, these organisms do not en-
code a BchLNB complex or the capacity for carbon fix-
ation via either the 3-hydroxypropionate bi-cycle or the
Calvin cycle [42]. It is worth noting, however, that TC_
22 does encode a Form IV rubisco-like protein on a
small contig; however enzymes in this family are not
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Fig. 2 (See legend on next page.)
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(See figure on previous page.)
Fig. 2 a Concatenated ribosomal protein phylogeny of the Chloroflexota, focusing on order SBR1031 (Aggregatilineales). Organisms encoding phototrophy with
a Type 2 reaction center highlighted in green (including TC_22, which did not recover reaction center genes but may be a phototroph, as discussed in the text).
Genomes first described here noted with pink circles. As species names are not available for MAGs of uncultured organisms, strains are labelled with MAG IDs (this
study) or NCBI WGS database IDs (others) followed by taxonomy as derived from GTDB-Tk. Clades not the focus of this study have been collapsed and labeled
with GTDB-Tk taxonomy. b Tanglegram showing phylogenetic (in)congruence between concatenated ribosomal proteins (left) reflecting organismal relationships
with PufM (right) as a marker of the horizontal gene transfer of phototrophy proteins. Dotted lines show topological congruence within some lineages of
Chloroflexia (in black) and incongruence between Roseiflexus, Roseilinea, and phototrophic members of SBR1031 (in red). This is indicative of horizontal gene
transfer of phototrophy proteins from the Roseiflexus lineage to Roseilinea and SBR1031

Fig. 3 Heatmap of metabolic functions of Aggregatilineales genomes produced by KEGG-decoder. The color gradient reflects the fractional
abundance of genes associated with a pathway encoded by a particular genome (i.e. white encodes 0 genes, and darkest red encodes all genes
annotated as part of the pathway). Genome IDs as used in this study (TC##) or as WGS identifiers (all others). Note that the apparent presence of
Calvin cycle genes in TC_22 and other members of Aggregatilineales is due to the presence of a Form IV rubisco-like protein that does not
catalyze CO2 fixation, as described in the text
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capable of catalyzing CO2 fixation and instead are used
for a variety of other functions [34] and this genome
does not encode phosphoribulose kinase.
Comparisons of organismal (based on concatenated

ribosomal proteins and other vertically inherited markers)
and phototrophy protein (e.g. PufL, PufM) phylogenies in-
dicated substantial incongruences between organismal
and phototrophy tree topologies. These relationships are
indicative of a history of horizontal gene transfer (Fig. 2b)
(e.g. [30]). In particular, the reaction centers found in
members of SBR1031 branch with those of Roseiflexus ra-
ther than as a clade separate from those of Chloroflexia
(e.g. Chloroflexus + Roseiflexus), suggesting that horizontal
transfer of phototrophy proteins occurred from the Rosei-
flexus branch to members of SBR1031—a pattern previ-
ously recognized in other members of the SBR1031/
Aggegatilineales [42]. Interestingly, like Roseiflexus and
some other phototrophic members of SBR1031/Aggegati-
lineales [42], TC_71 and TC_152 encode fused pufL/pufM
genes encoding the two subunits of the Type 2 reaction
center heterodimer. Together with reaction center protein
phylogenic relationships, this observation indicated that
the reaction centers of these organisms are more closely
related to those of the Roseiflexus lineage of Chloroflexia
than to the more closely related Ca. Roseilinea gracile,
which encodes unfused pufL and pufM genes. A corollary
of these observations of is that phototrophy in SBR1031
must postdate the acquisition and diversification of photo-
trophy in the Chloroflexia, events that have been esti-
mated to have occurred in the last ~ 1 billion years [31].

Conclusions
While horizontal gene transfer can be confidently deter-
mined to have been responsible for the presence of photo-
trophy in SBR1031, it remains unclear to what extent
intra-order horizontal gene transfer played a role in the
extant distribution of phototrophy within the clade.
Phototrophic lineages of SBR1031 show a polyphyletic dis-
tribution, separated by many nonphototrophic lineages
(Fig. 2a). This distribution could be reasonably explained
by the presence of phototrophy in the last common ances-
tor of SBR1031 followed by extensive loss in most line-
ages; however differences in the topology of phototrophy
proteins and organismal phylogenies within SBR1031 may
indicate later acquisition followed by multiple instances of
horizontal gene transfer between members of the clade.
Discovery and study of additional phototrophic members
of SBR1031 will be valuable to confidently resolve phylo-
genetic relationships of SBR1031 phototrophy proteins to
assess organismal relationships in this clade.
The expanded environmental distribution and genetic

diversity of Chloroflexota phototrophs described here
further reinforces that genome-resolved metagenomic
sequencing can provide an effective avenue for

discovering novel microbial diversity, particularly of
hard-to-culture phototrophs (e.g. [6, 15, 35, 41, 48]).
These data also reinforce hypotheses that horizontal
gene transfer has been a major mechanism behind the
extant distribution of anoxygenic phototrophy (e.g. [12,
42, 48]). Together with the mounting evidence that most
microbial lineages that have ever lived are now extinct
[23], the continuing lack of discovery of donor lineages
for horizontal gene transfer of phototrophy leads toward
a consistent hypothesis: most phototrophic lineages that
have ever existed have gone extinct, but relatively fre-
quent horizontal gene transfer has allowed phototrophy
pathways to persist in new lineages (e.g. [44]).
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