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Fast response of fungal and prokaryotic
communities to climate change
manipulation in two contrasting tundra
soils
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Abstract

Background: Climate models predict substantial changes in temperature and precipitation patterns across Arctic
regions, including increased winter precipitation as snow in the near future. Soil microorganisms are considered key
players in organic matter decomposition and regulation of biogeochemical cycles. However, current knowledge
regarding their response to future climate changes is limited. Here, we explore the short-term effect of increased
snow cover on soil fungal, bacterial and archaeal communities in two tundra sites with contrasting water regimes
in Greenland. In order to assess seasonal variation of microbial communities, we collected soil samples four times
during the plant-growing season.

Results: The analysis revealed that soil microbial communities from two tundra sites differed from each other due
to contrasting soil chemical properties. Fungal communities showed higher richness at the dry site whereas
richness of prokaryotes was higher at the wet tundra site. We demonstrated that fungal and bacterial communities
at both sites were significantly affected by short-term increased snow cover manipulation. Our results showed that
fungal community composition was more affected by deeper snow cover compared to prokaryotes. The fungal
communities showed changes in both taxonomic and ecological groups in response to climate manipulation.
However, the changes were not pronounced at all sampling times which points to the need of multiple sampling
in ecosystems where environmental factors show seasonal variation. Further, we showed that effects of increased
snow cover were manifested after snow had melted.

Conclusions: We demonstrated rapid response of soil fungal and bacterial communities to short-term climate
manipulation simulating increased winter precipitation at two tundra sites. In particular, we provide evidence that
fungal community composition was more affected by increased snow cover compared to prokaryotes indicating
fast adaptability to changing environmental conditions. Since fungi are considered the main decomposers of
complex organic matter in terrestrial ecosystems, the stronger response of fungal communities may have
implications for organic matter turnover in tundra soils under future climate.
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Introduction
Arctic tundra represents a globally significant biome cov-
ering 7.3 million km2 (~ 5% of Earth’s land area). It is
characterized by low temperatures, a short plant-growing
season and a long dark winter with sub-zero temperatures.
In general, tundra soils contain high quantities of organic
matter [47] due to the constrained decomposition pro-
cesses caused by low temperatures and strong nutrient
limitations [45]. This pool of organic matter can play an
important role in the global terrestrial carbon (C) cycle if
mineralized [76]. Microorganisms are the main drivers of
degradation of soil organic C (SOC mineralization) into
greenhouse gases [48, 83]. Global climate changes, includ-
ing warming and altered precipitation, are predicted to be
the most pronounced at northern latitudes [12, 50].
Therefore, the response of tundra soil microorganisms to
these changes will have important consequences for eco-
system functioning and climate change feedbacks.
Nutrient cycling and the decomposition of organic

matter in various habitats are driven by a diverse group
of microorganisms (fungi, bacteria, archaea, and micro-
eukaryotes). Fungi are considered the main decomposers
in terrestrial ecosystems in part due to their production
of a wide range of lignocellulytic enzymes with abilities
to attack complex parts of soil organic matter [84].
Bacteria and archaea, unlike fungi, are rather involved in
earlier stages of organic matter decomposition and a
faster consumption of simple carbon compounds [60].
Evidence suggests that soil temperature and moisture
are important environmental parameters affecting mi-
crobial activity [11, 79] and SOC decomposition rates
[39, 75]. Climate change in cold regions may thus change
the activity of soil microbial communities and boost their
ability to decompose SOC, which may alter C storage in
Arctic soils and influence CO2 concentration in the
atmosphere [14].
Climate change is projected to increase winter precipita-

tion as snow in northern latitudes during the coming
decades [50]. The depth and duration of seasonal snow
cover seem to be important parameters affecting microor-
ganisms in tundra soil [17, 74] and thus SOC decompos-
ition. The snow pack serves as an insulation layer for soil
and vegetation [33], protecting the soil from extremely
low air temperatures that occur during the Arctic winter.
Deeper snow cover enhances the isolation effect, which
rises winter soil temperature [59] leading to increased
microbial activity [74]. The influence of snow cover on soil
ecosystems is not limited to the winter season and can
persist until late summer by affecting e.g. soil moisture,
the length of plant growing season, or nutrient availability
[24, 87, 90, 95]. Increased snow cover has been shown to
affect tundra soil respiration [59, 94], density of shrub
cover [62, 95], litter decomposition [13], and nutrient
dynamics [74, 77] suggesting that deeper snow pack may

potentially alter microbial communities. These findings
are supported by a recent study by Xue et al. [96] report-
ing increased abundance of microbial functional genes
involved in SOC decomposition as a result of deeper snow
cover in tundra soil. Several recent studies assessing the
effect of increased snow cover on microbial communities
involved only specific groups of microbes [20, 57, 61].
However, to better understand and quantify tundra soil
ecosystem processes, it is essential to address both fungal
and prokaryotic communities at the same time. Also, most
studies are performed following several years of in situ
ecosystem manipulation [58, 73, 78] and, thus, do not
investigate fast (within one-two years) and immediate
responses of tundra soil microbial communities to en-
hanced snow cover. In contrast to long-term climate
manipulation treatments, where the ecological drivers of
microbial communities are mostly changes in soil chem-
ical properties and/or vegetation cover, the changes of
microbial communities following short-term treatment
are mainly associated with habitat loss and opening of
new niches that may be colonized by rapidly responding
microbes [9, 30, 38, 67]. Since the mechanisms driving
microbial communities are different for short- and long-
term climate manipulation experiments, both types of
manipulation treatments need to be studied. Today, soil
microbial communities form one of the largest uncertain-
ties to climate model predictions [36]. Thus, understand-
ing the short-term effect of increased winter precipitation
on the dynamics and functioning of soil microbial com-
munities, major decomposers of SOC, is necessary for pre-
dicting if Arctic tundra soils become a sink or source of
CO2 under future climates.
The main aim of this study was to characterize compos-

itional changes in fungal and prokaryotic communities in
response to increased snow cover in two Arctic tundra
soils with contrasting water regimes and vegetation types
(a dry mixed-shrub heath and a wet fen, respectively). In
order to mimic increased winter precipitation, we imple-
mented a snow manipulation experiment using snow
fences to trap drifting snow during winter on Disko Island,
Western Greenland [13]. To our knowledge, this is the
first study addressing short-term effects of increased
winter precipitation simultaneously on fungal, bacterial
and archaeal communities in tundra soil. The results of
Wallenstein et al. [92] indicate that activity of extracellular
enzymes in tundra soils varies with season and very
limited information is available on temporal dynamics of
microbial communities in these type of soils therefore we
repeated soil sampling at four time points between June
and October which is snow-free period in our study site.
We hypothesized that microbial community diversity will
be quickly and markedly affected by increased snow cover
mirroring changes in soil moisture and nutrient availabil-
ity induced by deepened snow and that this effect will also
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be manifest in the snow-free period. Furthermore, we
hypothesized that the bacterial community composition
and richness will be more affected by short-term snow-
manipulation compared to the fungal community as
bacteria generally have higher growth and turnover rates
than fungi [80] and thus a potentially faster adaptation to
the new conditions. Based on results from the same
experimental site showing that deeper snow during the
winter significantly increases the rate of litter decompos-
ition [13] we hypothesized that snow manipulated plots
will exhibit higher abundance of saprotrophic and plant
pathogenic fungi compared to control sites.

Methods
Study site and experimental set-up
The study area was in the Blæsedalen valley (69 °16′N,
53°27′W) on Disko Island in Western Greenland. The area
has low-arctic climate with a mean annual air temperature
of − 3.0 °C, the warmest month is July with a mean
temperature of 7.9 °C and the coldest month is March with
a mean temperature − 14 °C (period 1991–2011). The mean
annual amount of precipitation is ~ 400mm of which ~
40% fall in form of snow (1994–2006), measured at Arctic
Station, approximately 3 km from the study area [46]. The
study area lies within the discontinuous permafrost zone.
The snow manipulation experiment was established at

two tundra sites approximately 200m apart. The first site
was dry mixed-shrub heath dominated by Vaccinium uligi-
nosum, Betula nana, Salix glauca, Empetrum nigrum, and
Cassiope tetragona, and soil consists of basaltic rock frag-
ments covered by a thin (5–10 cm) organic horizon – indi-
cated throughout the manuscript as the dry site (D). The
second site was wet fen dominated by Carex aquatilis ssp.
stans, Carex rariflora, Eriophorum angustifolium, Paludella
squarrosa, Tomentypnum nitens, Salix arctophila and
Dryas octopetala, and soil consists of basaltic rock frag-
ments covered by a ~ 20-cm peat layer - indicated as the
wet site (W). At both sites, the snow depth manipulation
experiment included six replicate blocks providing suffi-
cient statistical power. Each block contained a 14.7-m-long
and 1.5-m-tall snow fence to create snowdrifts on the lee-
ward (south) side of the fences during winter (indicated as
snow manipulation - S), while the windward side of the
snow fence represented ambient snow conditions (indicated
as control - C). Snow depth on manipulated side of snow
fences was on average 150 cm, snow depth on control side
was on average 70 cm, and these conditions lasted for at
least 3months during the winter period. Snow fences were
established in June 2012 and July 2013 at the dry site and
the wet site, respectively. Soil temperatures (5 cm depth)
were measured continuously in snow manipulation and
control plots of three blocks, using TinyTag PB-5001 ther-
mistor probes (Gemini Data Loggers, Chichester, UK) and
logged every hour. The sites have been studied previously

with respect to the effect of increased snow cover on litter
decomposition [13], litter-decomposing fungi [20] and me-
thane fluxes [27, 63].

Sample collection and processing
Sampling of the topsoil (0–5 cm) at both sites was re-
peated four times during the entire snow-free period of
2014: June 23–26 (immediately after snow melt on both
sides of snow fences), July 18–22, September 07–10, and
October 10–12. Five soil cores (2 cm in diameter) were
collected at control and manipulated side of each snow
fence (six replicates at each site) at a distance of ca. 1 m
from each other in a parallel line with the snow fence in
a distance of ca. 2.5 m from the fence. Soil samples were
processed within 24 h after sampling in the laboratory of
nearby Arctic Station. The material from the five replicate
soil cores was combined and homogenized and woody
roots were removed. Subsamples for DNA isolation,
chemical analyses and quantification of fungal biomass
were frozen at − 20 °C, and DNA was isolated within 1
week in the laboratory of Arctic Station using Nucleospin
Soil Kit (Macherey-Nagel, Düren, Germany). Three DNA
extractions were performed from each sample and mixed
afterwards. Approximately 0.25 g of soil was used for each
DNA extraction. All samples were kept frozen in insulated
boxes during the transportation to Copenhagen where
they were stored at − 20 °C until further analysis.

Soil properties and fungal biomass
Records of soil temperature at 5 cm soil depth were carried
out using a portable thermometer (Spectrum Technologies,
Aurora, IL, USA) [20]. Soil samples were weighed into tin
capsules and analyzed for total C and N on Isoprime
isotope ratio mass spectrometer (Elementar, Langenselbold,
Germany) coupled to a Eurovector CN elemental analyzer
(Eurovector, Pavia, Italy). Soil organic matter (SOM) was
estimated through loss of ignition at 550 °C. Soil pH was
measured by adding double deionised H2O to dry soil in a
1:10 ratio, and water content was calculated by freeze-dry-
ing of soil subsamples. Total ergosterol was extracted from
0.25 g of freeze-dried soil with 10% KOH in methanol and
analyzed by high-performance liquid chromatography using
a method modified from Bååth [7].

Illumina amplicon sequencing of fungal and bacterial
communities
For fungal community analysis, the primers gITS7/ITS4
[49] were used to amplify the ITS2 region of rRNA
operon, and for prokaryotic community analysis, primer
pair 515F/806R targeting the V4 region of 16S rRNA gene
was used [19]. PCR amplifications were performed with
primers containing template-specific sequences extended
by a 2-nt linker and 4–6-nt barcode. Each of three inde-
pendent 10 μL reactions per DNA sample contained 2 μL
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of 5x polymerase buffer, 1 μL of 10mgmL− 1 bovine
serum albumin, 0.5 μL of each primer (0.01mM), 0.2 μL
of dNTPs (10mM), 0.1 μL of PCRBIO HiFi Polymerase
(PCR Biosystems, London, UK), 0.5 μL of template DNA
(DNA concentration 10–100 ng/μL), and 5.2 μL of H20.
The cycling conditions were 95 °C for 1min; 35 cycles of
95 °C for 15 s; 56 °C for 20 s; and 72 °C for 20 s, followed
by 72 °C for 5 min for primers gITS7/ITS4, and 95 °C for
1min; 30 cycles of 95 °C for 15 s; 50 °C for 20 s; and 72 °C
for 20 s, followed by 72 °C for 5min for primers 515F/
806R. PCR products from three PCR replicates were pooled
and purified using HighPrep™ PCR clean up system (MAG-
BIO, Gaithersburg, MD, USA). The concentration of PCR
products was quantified using the Qubit® 2.0 Fluorometer
(Life Technologies, Carlsbad, CA, USA). PCR products
were mixed equimolarly and Illumina adapter sequences
were ligated on amplicons using TruSeq DNA PCR-Free
LT Sample Prep Kit (Illumina, San Diego, CA, USA). The
amplicon library was subjected to sequencing on Illumina
MiSeq 2 × 250 bp paired-end platform in the National
High-throughput DNA Sequencing Centre (Copenhagen,
Denmark). Sequencing data are available in the MGRAST
public database (http://metagenomics.anl.gov/, dataset
numbers 4782666.3 and 4782667.3).

Bioinformatic analyses
Illumina sequencing data were processed using the com-
bination of pipelines proposed by Bálint et al. [8] and
Větrovský and Baldrian [85]. Paired-end reads were
merged using fastq-join [3]. The ITS region of fungal se-
quences was extracted using ITSx [10]. Sequences were
clustered at 97% similarity level using UPARSE [32]. Dur-
ing the clustering chimeric sequences were discarded.
Singleton sequences were removed from the dataset and
consensus sequences were constructed for each oper-
ational taxonomic unit (OTU). Closest hits of fungal and
bacterial sequences were identified using UNITE database
[1] and SILVA reference database release 119 [72],
respectively.

Diversity and statistical analysis
The most abundant OTUs representing 80% of all fungal
or prokaryotic sequences were used for calculation of
diversity estimates, providing combined information on
OTU richness and evenness in an individual samples
[86]. These estimates were calculated based on datasets
containing 9000 fungal and 2200 bacterial randomly
selected sequences from each sample. OTU accumula-
tion curves were calculated using R package vegan [64].
Venn diagrams, where OTUs with > 0.01% abundance
were considered as present, were calculated using Venn
Diagram Plotter (https://omics.pnl.gov/software/venn-
diagram-plotter). The data were analyzed with a combin-
ation of constrained and unconstrained multivariate

statistical methods in order to account for total variation
in the data and variation explainable by the environmen-
tal data. Partial principal component analysis (PCA)
where snow fence block was set as a covariate and re-
dundancy analysis (RDA) with interactive forward selec-
tion and 999 Monte Carlo permutations were used to
explain the variation in the data. Both analyses were
performed in the multivariate data analysis software
CANOCO 5.0 [82]. Significant community differences
were tested by analysis of similarity (ANOSIM) with
Bray-Curtis dissimilarity of relative abundances calcu-
lated using software PRIMER 6 [56]. Soil properties and
microbial diversity were tested for differences using
paired t-tests following square root transformation of
the data. Statistically significant differences in abundance
of OTUs or higher-level microbial taxa between control
and manipulated sites were tested by DESeq2 with Ben-
jamini-Hochberg correction [55, 93].

Results
Soil properties
The soil properties significantly differed between the dry
and the wet sites. Water content averaged 53 and 80%
(P = 6 × 10− 18), C content 20.1 and 26.8% (P = 6 × 10− 7),
N content 0.60 and 1.46% (P = 2 × 10− 16), pH 5.15 and
5.9 (P = 1 × 10− 21) and organic matter content 39.3 and
57.3% (P = 1 × 10− 10) at the dry and wet site respectively
(Additional file 1). However, we found no significant dif-
ferences in soil chemical properties between control and
snow manipulated plots at any of the two sites. Soil
temperature (measured at 5 cm depth) was higher in
snow-manipulated plots compare to control plots during
the snow covered period and the difference was more
pronounced at the dry site compared to the wet site
(Additional file 2) [20]. The mean annual soil tempera-
tures in 5 cm depth were 0.02 °C and 1.06 °C in the
snow-manipulated plots and − 1.33 °C and 0.68 °C in the
control plots at the dry and wet site respectively.

Fungal communities
The analysis of fungal community was performed with 2,
307,725 sequences that remained after quality filtering,
and removal of chimeric and non-fungal sequences. An
average of 24,039 sequences was obtained (minimum of
9324) per sample. OTU accumulation curves are shown
in Additional file 3. Fungal diversity (expressed as the
number of OTUs that represented 80% of all sequences
in each sample calculated at 9000 sequences per sample)
was significantly higher (P = 1 × 10− 9) at the dry site
(48.5 ± 1.6) compared to the wet site (33.2 ± 1.3) (Fig. 1).
Fungal diversity at the dry site was significantly lower
(P = 0.032) in control plots (45.6 ± 2.2 OTUs represent-
ing 80% of sequences) compared to snow-manipulated
plots (51.3 ± 2.1 OTUs representing 80% of sequences)
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with the most pronounced difference in June (P = 0.027).
Similarly to fungal diversity, fungal biomass (expressed
as ergosterol content) was substantially higher (P = 1 ×
10− 12) at the dry site (223 ± 9.7 μg ergosterol g− 1 SOM)
compared to the wet site (122 ± 4.6 μg ergosterol g− 1

SOM). Contrary to fungal diversity, fungal biomass
showed significant differences (P = 0.031) at the wet site,
where the biomass was the largest in snow-manipulated
plots (Fig. 1).
The overall fungal community was largely comprised

of the Basidiomycota (41.6%) and Ascomycota (32.9%)
(Fig. 2). Mucoromycotina comprised of 1.07% of the fun-
gal community and detected Glomeromycota and Chytri-
diomycota represented less than 0.5% of the sequences.
PCA (principal component analysis) of control plots

from combined dataset of the dry and the wet sites
showed that the two sites harbored very distinct fungal
populations and that the difference was driven by the
soil chemical properties (Fig. 3). Only 10% of fungal
OTUs were present at both the dry site and the wet site
(Additional file 4). Therefore, we analyzed the data from
the two sites separately to be able to target the effect of
increased snow cover on the fungal communities. At the
the dry site, Ascomycota represented 49.6% of identified
sequences whereas Basidiomycota represented only
20.4%. Here, the most abundant fungal orders were as-
comycetous Helotiales (13.6%), Chaetothyriales (11.0%),
Archaeorhizomycetales (6.9%) and basidiomycetous
Agaricales (12.3%). Contrary to the dry site, the wet site
contained distinctively more sequences belonging to

Fig. 1 Fungal (a) and bacterial (b) diversity estimates and fungal biomass (ergosterol content) (c) in the dry (D) and the wet (W) tundra soil in
control (C) and snow-manipulated (S) plots by season and as a seasonal average (column chart). Diversity is expressed as the number of the most
abundant OTUs (operational taxonomic units), which represented 80% of all sequences. The data represent the means with standard errors (n =
6), for seasonal average (n = 24). Statistically significant effects (P < 0.05) of treatment between C and S at a specific site are indicated by asterisk
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Basidiomycota (66.2%) with order Agaricales represent-
ing almost half of all sequences; and Ascomycota showed
lower relative abundance representing only 18.7% of
identified fungal community (Fig. 2). Ectomycorrhizal,
saprotrophic and lichenized fungi showed similar abun-
dance at the dry site, whereas the wet site was

dominated by the sequences belonging to ectomycorrhi-
zal fungi (Fig. 4b). The effect of season on entire fungal
community composition was rather minor (Fig. 5) there-
fore we analyzed the response of fungi to increased snow
cover both for individual time points (n = 6) and for
pooled samples across all time points (n = 24).

Fig. 2 Phylogenetic assignment of fungal (a) and bacterial (b) sequences from the dry and the wet tundra (control sites only). The data represent
the mean abundances from four time points (n = 24)

Fig. 3 Principal component analysis (PCA) of relative abundances of fungal (a) and bacterial (b) genera from control plots and environmental
variables. All genera with > 0.01% abundance in the dry or the wet tundra soil were considered. Ergo, ergosterol; N, nitrogen; C, carbon; SOM, soil
organic matter; Wcont, water content
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The effect of increased-snow cover on fungal commu-
nities was profound: only 46% of fungal OTUs on the
dry site and 38% on the wet site were shared between
snow-manipulated plots and controls (Additional file 4),
shared OTUs were represented by 96% of sequences. Six
(dry site) and six (wet site) out of the thirty most
abundant fungal OTUs showed statistically significant
differences (P < 0.05) in the abundance between manipu-
lated and control plots (Additional file 5) across all time
points. The eighth most abundant OTU at the dry site
assigned to lichenized Lecanoromycetes was signifi-
cantly (P = 0.004) less abundant in manipulated plots
(1.2%) compared to control plots (1.7%), whereas the
second most abundant OTU from the wet site, the
ectomycorrhizal Inocybe, had five times higher abun-
dance (P = 4 × 10− 12) in increased-snow plots compared
to control (Additional file 5 - data for seasonal average).

At both sites, PCA showed a separation of fungal com-
munities between the treated and control plots (Fig. 6)
and the analysis of similarities (ANOSIM) based on
Bray-Curtis distance revealed that the OTU compos-
ition was significantly different between the fungal
communities found in ambient and manipulated plots
at both sites (dry site R = 0.80, P = 0.01; wet site R =
0.72, P = 0.01). Results of redundancy analysis (RDA) of
the 40 most abundant fungal OTUs showed that snow
manipulation treatment had significant effect on the
fungal communities and explained 8.1 and 10% of vari-
ability at the dry and the wet sites, respectively (Fig. 5).
In total, 294 fungal genera were identified in the whole
dataset. The most abundant fungal genera significantly
affected by snow manipulation were Inocybe
(P = 0.002), Camarophyllus (P = 3 × 10− 7), Tomentella
(P = 0.002), Chalara (P = 0.002), Peltigera (P = 6 × 10−

Fig. 4 Proportion of sequences belonging to different fungal ecological groups in the dry (D) and the wet (W) tundra soil in control (C) and
snow-manipulated (S) plots by season (a) and as a seasonal average (b) with the chart area corresponding to the ergosterol content (pie chart).
The data represent the means with standard errors (n = 6), for seasonal average (n = 24). Statistically significant effects of treatment between C
and S are indicated by asterisk (DESeq, Benjamini-Hochberg correction, P < 0.05)

Fig. 5 Results of redundancy analysis (RDA) of the 40 most abundant bacterial and fungal OTUs from the dry and the wet tundra soil. Depicted
parameters had significant (P < 0.05) effect on variation of bacterial or fungal community. C (carbon), N (nitrogen), SOM (soil organic matter)
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12) and Rhodotorula (P = 0.025) at the dry site and Ino-
cybe (P = 0.049), Russula (P = 7 × 10− 6), Archaeorhizo-
myces (P = 0.019), Mycena (P = 9 × 10− 6), Cenococcum
(P = 0.047) and Clavaria (P = 0.001) at the wet site
(Fig. 7). Fungal communities showed temporal variation
during the snow-free period in response to the snow-
manipulation treatment (Additional file 6). Fungal com-
munity collected during October was the most affected
by increased snow cover compared to other seasons
(Fig. 4a, Additional files 5 and 6). Ectomycorrhizal fungi
inhabiting the wet site showed significantly higher
abundance (P = 0.001) in treated plots compared to
control plots (Fig. 4b). Also, the wet site in October
showed significant differences (P = 0.033) in abundance
of arbuscular mycorrhizal fungi (Fig. 4a).

Prokaryotic communities
The analysis of prokaryotic community was performed with
1,214,686 sequences that remained after quality filtering,
and removal of chimeric sequences and sequences not be-
longing to prokaryotes. An average of 12,653 sequences
was obtained (minimum of 3098) per sample. OTU accu-
mulation curves are shown in Additional file 3. Bacterial di-
versity (expressed as the number of OTUs that represented
80% of sequences in each sample calculated at 2200 se-
quences per sample) was substantially lower (P = 5 × 10− 23)
at the dry site (230 ± 5.7) compared to the wet site (370 ±
6.0). At the dry site, bacterial diversity showed significant
changes (P = 0.022) between control (224 ± 7.9) and snow-
manipulated (236 ± 8.1) plot with the most pronounced dif-
ferences in June (P = 0.012) and July (P = 0.042) (Fig. 1).

Fig. 6 Partial principal component analysis (PCA) of relative abundances of the 30 most abundant fungal genera from the dry site (a) and the
wet site (b) and bacterial genera from the dry site (c) and the wet site (d), snow fence block was set as a covariate
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The overall prokaryotic community was dominated by
Proteobacteria (29.2%), Actinobacteria (17.7%) and Acid-
obacteria (14.2%). Alike the fungal communities, PCA
showed highly dissimilar bacterial communities at dry
and wet tundra sites (Fig. 3). Therefore, further analysis
was done separately for the two sites. Approximately
30% of bacterial OTUs were present at both the dry site
and the wet site (Additional file 4). Protebacteria consti-
tuted the most dominant phylum at both sites represent-
ing 28.9% at the dry site and 32.2% at the wet site. The
relative abundance of Actinobacteria was 23.4% at the
dry site and smaller at 14.6% at the wet site. OTUs
assigned to bacteria involved in nitrification process, am-
monia-oxidizing (P = 2 × 10− 156) and nitrite-oxidizing
bacteria (P = 2 × 10− 118), showed distinctively higher
abundance at the wet site compared to the dry site
(Additional file 7). For example, nitrite-oxidizing Nitros-
pira showed ten times relative abundance difference
between the dry and the wet site (Fig. 2). In contrast,
OTUs assigned to nitrogen-fixing bacterial taxa (e.g.
Cyanobacteria, Rhizobium and Bradyrhizobium) showed
significantly higher abundance (P = 5 × 10− 45) at the dry
site compared to the the wet site (Additional file 7). We
did not observed any significant effect of season on entire
prokaryotic community composition (Fig. 5) therefore we
analyzed the response of prokaryotes to increased snow
cover both for individual time points (n = 6) and for
pooled samples across all time points (n = 24).
Bacterial communities were apparently less influenced

by the increased snow cover than fungi. Snow-manipu-
lated plots and control plots shared 57 and 60% of bac-
terial OTUs at the dry and the wet sites, respectively

(Additional file 4), shared OTUs were represented by
98.5% of sequences. Significant differences in abundance
between treated and control plots were detected for three
out of the thirty most abundant bacterial OTUs, both for
the dry and the wet sites (Additional file 8). At the dry site
two OTUs assigned to the Acidothermaceae family
showed significant decrease (P = 0.026 and P = 0.026) in
their abundance in response to the treatment. Whereas at
the wet site two OTUs assigned to the class Acidobacteria
showed significantly positive response (P = 0.048 and
P = 0.031) to increased snow cover. ANOSIM analysis re-
vealed that the OTU composition was significantly differ-
ent between the prokaryotic communities only at the dry
site (R = 0.37, P = 0.01), and not at the wet site (R = 0.33,
P = 0.07). RDA of the prokaryotic community indicated
that snow manipulation treatment explained 4.6 and 7.4%
of community variability at the dry and the wet site, re-
spectively (Fig. 5). PCA of the bacterial communities at
both sites showed less clear distinction between treatment
and control compared to fungal communities (Fig. 6).
Archaea represented on average 0.6 and 2.3% of the pro-

karyotic community at the dry and the wet site, respectively.
Archaea showed significantly higher relative abundance at
the wet site compared to the dry site (P = 4 × 10− 15), how-
ever, we did not find any significant differences in their
abundance between control and snow-manipulated plots
(Additional file 9).

Discussion
Microbial communities of dry and wet tundra soil
Dry and wet tundra sites located 200m apart showed pro-
nounced differences in fungal and bacterial community

Fig. 7 Relative abundance of the six most abundant fungal genera from the dry (a) and the wet (b) tundra soil with statistically significant
difference between control (green) and snow-manipulated (red) plots across all seasons (DESeq2, Benjamini-Hochberg correction, P < 0.05). Green
asterisk indicates significantly higher abundance in control plots, red asterisk indicates significantly higher abundance in snow-manipulated plots.
The data represent the means with standard errors (n = 24)
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structure and diversity consistent with differences in key
soil chemical properties (Fig. 3), which is in accordance
with previous observations from permafrost-affected soils
[43, 99]. Besides abiotic soil properties, plant species/litter
amount and quality affect tundra soil microbial communi-
ties [21, 91]. As different plant communities dominated the
dry and the wet sites, we are unable to differentiate between
the main drivers of the observed differences. Bacterial
diversity almost doubled at the wet site as compared to the
dry site whereas moist conditions negatively affected fungal
diversity and biomass (Fig. 1). In accordance, water satur-
ation has unfavorable effect on soil fungal diversity and
abundance in Arctic tundra soils [44, 98].
Fungal community composition on order and phylum

levels differed substantially between the dry and the wet
sites (Fig. 2). At the dry site, the majority of identified
sequences belonged to Ascomycota with the most abun-
dant order Helotiales reported as a dominant fungal
group in Arctic soils [28, 30, 89]. Interestingly, Basidio-
mycota dominated the wet site (Fig. 2). With respect to
functional groups, ectomycorrhizal fungi showed highest
relative abundance at both sites, followed by lichenized
fungi at the dry site and saprotrophic fungi at the wet
site (Fig. 4), which is in accordance with a study from
Alaskan tundra [41]. We conclude that ectomycorrhizal
and saprotrophic fungi were more abundant at the wet
site whereas conditions at the dry site favored lichenized
fungi (Fig. 4a). However, taking fungal biomass at the
individual sites into consideration, the dry site harbored
a higher amount of ectomycorrhizal and saprotrophic
fungi compared to the wet site (Fig. 4b), despite their
lower sequence proportion. The higher proportion of
lichenized fungi in dry tundra and almost no occurrence
in wet tundra are likely due to denser vascular vegetation
at the wet site, which outcompeted lichens preferring
poorly vegetated habitats [25]. At the wet site ectomycor-
rhizal fungi distinctively dominated over saprotrophs
likely due to more favorable soil conditions and increased
shrub cover (e.g. of Salix) providing roots available for
mycorrhizal colonization. Furthermore, mycorrhizal fungi
can outcompete microbial decomposers for rhizosphere
territory [53] or by decreasing nutrient availability in the
soil [40], which may slow down SOM degradation and
increase soil C storage [5]. Mycorrhizal fungi can also con-
tribute to soil C storage by allocation of C from plants, as
proposed by Clemmensen et al. [22]. However, it should
be noted that comparisons of fungal functional groups in
between the sites may be biased by the fact that the pro-
portion of unidentified fungal taxa was higher at the dry
site than at the wet site (Fig. 2).
Despite a large difference in bacterial diversity between

the two sites (Fig. 1), bacterial community composition on
phylum level showed rather minor differences between the
dry and the wet sites (Fig. 2). Proteobacteria, Actinobacteria

and Acidobacteria dominated at both sites in accordance
with observations from Alaska and Svalbard [51, 52]. Nitrify-
ing bacteria (ammonia-oxidizing and nitrite-oxidizing) sig-
nificantly dominated at the wet site compared to the dry site
(Additional file 7). This is in accordance with Alves et al. [2],
who measured distinctively lower nitrification rates in dry
soil compared to wet tundra soil. Contrary to nitrifying
bacteria, nitrogen-fixing bacteria dominated at the dry site
compared to the wet site. This was likely linked to a higher
relative abundance of lichenized fungi at the dry site where
nitrogen-fixing cyanobacteria form lichens, symbiotic rela-
tionship with lichenized fungi. Even though archaea repre-
sent only a minority of soil prokaryotes, in our study 0.6% in
dry and 2.3% in wet tundra (Additional file 9), their role in
greenhouse gas exchange by tundra soils is crucial. Ecosys-
tems in the northern hemisphere with underlain permafrost
soil represent the largest natural source of methane on Earth
[37] and formation of methane (methanogenesis) is the ter-
minal process of anaerobic C degradation performed solely
by archaeal methanogens. Previous studies have shown con-
sistent links between methanogen abundance and methano-
genesis in Arctic soils [54, 88] and our observations indicate
that soil moisture will likely be a key determinant of archaeal
abundance and thus methane production.

Direct and indirect effects of experimental enhancement
of snow cover on microbial communities
Fungal and bacterial communities showed significant
changes in response to short-term increased snow cover
manipulation at both sites indicating high susceptibility
and/or adaptability of Arctic soil microbes to climate
change. Our findings are supported by previous studies on
Arctic soils demonstrating fast increase in abundance of
microbial functional genes involved in SOM decompos-
ition [96] and enhanced litter decomposition rates [13, 20]
as a result of short-term increase of snow pack. Interest-
ingly, contrary to our hypothesis, the fungal community
exhibited a stronger response to the manipulation com-
pared to the bacteria (Fig. 5, Additional files 4, 5 and 8)
even though bacteria are typically considered to have
higher growth and turnover rates than fungi [80] thus pos-
sessing an ability to adapt faster to new conditions. To our
knowledge, our study is the first to simultaneously analyze
the response of fungal and bacterial communities in tun-
dra soils to short-term climate change manipulations.
However, our results find support by Semenova et al. [78]
and Morgado et al. [58] who showed strong changes in
fungal community composition as a response to elevated
snow cover, and of Männistö et al. [57] who reported
minor changes in bacterial communities under naturally
elevated snow. It should be noted that the snow fence
treatment has multiple direct (e.g. enhanced winter soil
temperature, lowered soil temperature before and after
snow melt, and elevated soil water content after snow
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melt) and indirect effects (e.g. shortened plant growing
season due to late snow melt) on the microbial communi-
ties. It is difficult to disentangle the effect of these individ-
ual drivers on the microbial communities.
Deepened snow pack increased fungal biomass at the

wet site and enhanced the diversity of fungi and bacteria
at the dry site across all time points (Fig. 1). The effect
on microbial diversity at the dry site was most pro-
nounced at the beginning of the vegetative season, sug-
gesting that higher and more stable temperatures during
winter caused by increased snow pack (Additional file 2)
may have a direct and positive effect on microbial me-
tabolism and growth rates [16]. The increased snow pack
likely prolonged the period in which a winter microbial
community is able to build up. Higher abundance and
diversity of microbes as a result of soil warming has been
observed in different ecosystems [20, 69, 71, 96, 97] and
increased microbial diversity is associated with the enhance-
ment of various ecosystem processes including SOM de-
composition [18, 68].
The most abundant fungal genera significantly affected by

deepened snow were ectomycorrhizal Inocybe, Camarophyl-
lus, Russula, Tomentella, and Cenococcum saprotrophic
Chalara, Mycena, and Clavaria, saprotrophic yeast Rhodo-
torula, lichenized Peltigera and root-associated Archaeorhi-
zomyces with uncertain ecological roles (Fig. 7). Inocybe
represented the most abundant genus showing positive sig-
nificant response to increased snow cover on both sites. Our
observation contrasts Morgado et al. [58] and Semenova et
al. [78] who observed a decline as well as Mundra et al. [61]
showing no effect on abundance of Inocybe due to long-
term snow manipulation. Ectomycorrhizal Russula and Cen-
ococcum at the wet site and Tomentella at the dry site
showed significantly higher abundance due to the treatment.
Since fungi belonging to Russula, Cenococcum and Tomen-
tella genera may possess decomposition abilities of complex
soil organic matter [15, 26, 31], our observations might be
the result of higher organic matter decomposition rates
associated with increased soil temperature under elevated
snow cover. The increased abundance of Russula, Cenococ-
cum and Tomentella in response to soil warming has been
reported in several studies [30, 35, 41, 65, 66]. Increased
snow cover at the wet tundra site positively affected sapro-
trophic Mycena and Clavaria. Fungi belonging to Mycena
spp., which are able to degrade all the major components of
plant litter [42], have been shown previously to increase as a
response to soil warming [4, 81]. Our findings are supported
by Blok et al. [13] who observed increased microbial litter
decomposition in deep-snow plots (in the same experimen-
tal plots as used in our study) and agree with observations
from Svalbard where an increase in saprotrophic fungi was
observed after 6 year of snow fence manipulation [61]. A
higher abundance of fungi with decomposing abilities in the
treated plots indicates that the decomposition processes in

tundra soils may change under future enhanced snow cover.
Deepened snow pack significantly increased abundance of
ectomycorrhizal fungi at the wet tundra site (Fig. 4b). Higher
richness and abundance of ectomycorrhizal fungi as a re-
sponse to summer soil warming has been reported previ-
ously [23, 29], but snow fence treatment has rather shown a
decline in this community [58, 61, 78]. An increase in arbus-
cular mycorrhizal fungi due to deeper snow pack was de-
tected in October at the wet tundra site (Fig. 4a). To our
knowledge there are no previous reports of response of
arbuscular mycorrhizal fungi to increased snow cover in
tundra ecosystem. Contrary to our hypothesis, we did not
detect any significant changes in abundance of saprotrophic
fungi and plant pathogens under the snow cover manipula-
tion which is in agreement with Semenova et al. [78] who
did not observe any changes in abundance of these fungal
functional groups after 18 years of increased snow depth in
tundra soil.
Even though the response of prokaryotic community to

increased snow cover was distinctively smaller than the
response of fungi, several bacterial OTUs showed signifi-
cant changes in their relative abundance under the treat-
ment. The most abundant bacterial OTUs with significant
feedback to snow manipulation were assigned to the classes
Acidobacteria, Actinobacteria, Sphingobacteria and Ther-
moleophilia (Additional file 8). Representative taxa belong-
ing to Acidobacteria and Actinobacteria have plant-specific
interactions and abilities to degrade complex carbon com-
pounds including plant cellulose and hemicellulose or
fungal chitin [6, 34]. Acidobacteria and Actinobacteria are
sensitive to environmental changes caused by increased
snow cover [57, 73]. An abundant OTU assigned to Chiti-
nophagaceae (Sphingobacteriia class), known as chitin
degraders and hence able to decompose fungal cell wall
material, responded positively to increased snow cover. In
accordance, increased snow cover manipulation resulted in
higher abundance of genes for enzymes involved in chitin
utilization [73, 96]. Interestingly, the relative abundance of
two abundant OTUs at the dry site assigned to thermo-tol-
erant cellulolytic Acidothermaceae decreased in response to
the treatment. Our findings show changes in abundance of
bacteria with polymer decomposing abilities, which indi-
cates that increased snow cover can impact SOM decom-
position processes driven not only by fungi, but also by
bacteria. The archaeal community at the wet site showed
decreased abundance due to snow fence treatment con-
stantly across all sampling times, however, these changes
were insignificant (Additional file 9). This contrasts Xue et
al. [96] who reported higher archaeal abundance under
snow fence treatment in a moist tundra.

Conclusions
We demonstrate here that microbial communities in
tundra soil differ at a small spatial scale due to
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contrasting soil parameters – in this case closely linked
to landscape type, drainage and plant communities. Our
results show that short-term climate manipulation (within
few years) affects fungal and bacterial communities with
fungal communities exhibiting a stronger response com-
pared to prokaryotes. Rapid changes of fungal communities
in response to the manipulation indicate their susceptibility
and/or adaptability to current fluctuating weather condi-
tions and future long-term climate changes. Furthermore,
the effects of enhanced snow were manifested after snow
had melted. Our study also shows that sampling at different
time points within one growing season is needed if we are
to understand the responses of soil microbial community
composition to future changing climate. We are aware of
the limitations of microbial rDNA amplicon sequencing
[70], therefore for better understanding of the short-term
effect of increased snow cover on microbial communities, it
would be necessary to complement the current data with
analysis of metatranscriptomes or metaproteomes provid-
ing insight into functional roles of individual microbial taxa
under the future climate warming.
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