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Abstract

Arcticibacterium luteifluviistationis SM1504T was isolated from Arctic surface seawater and classified as a novel genus of the
phylum Bacteroides. To date, no Arcticibacterium genomes have been reported, their genomic compositions and
metabolic features are still unknown. Here, we reported the complete genome sequence of A. luteifluviistationis SM1504T,
which comprises 5,379,839 bp with an average GC content of 37.20%. Genes related to various stress (such as radiation,
osmosis and antibiotics) resistance and gene clusters coding for carotenoid and flexirubin biosynthesis were detected in
the genome. Moreover, the genome contained a 245-kb genomic island and a 15-kb incomplete prophage region. A
great percentage of proteins belonging to carbohydrate metabolism especially in regard to polysaccharides utilization
were found. These related genes and metabolic characteristics revealed genetic basis for adapting to the diverse extreme
Arctic environments. The genome sequence of A. luteifluviistationis SM1504T also implied that the genus Arcticibacterium
may act as a vital organic carbon matter decomposer in the Arctic seawater ecosystem.

Keywords: Arcticibacterium luteifluviistationis, Secondary metabolite biosynthesis, Stress resistance, Carbohydrate
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Introduction
As the third most abundant bacterial group in the sea-
water system, phylum Bacteroidetes plays a vital role in
diverse oceanic biogeochemical processes [1]. It has been
reported that phylum Bacteroidetes could mediate the
degradation of HMW compounds especially in the re-
spect of algal organic matter [2, 3]. Many heterotrophic
microorganisms such as the SAR11 clade and marine
Gammaproteobacteria grow partly due to phylum Bac-
teroidetes-derived organic products [4, 5]. Thus, phylum
Bacteroidetes groups may play crucial roles in the nutri-
ent utilization and cycling in the seawater ecosystem.
The family Cytophagaceae, currently comprising 31 gen-

era, is one of the largest groups in the phylum Bacteroidetes

[6]. The species in the family Cytophagaceae have been iso-
lated from various habitats including freshwater river [7],
seawater [8], permafrost soil [9] and even polar glacial till
[10]. The genus Arcticibacterium, belonging to the family
Cytophagaceae, accommodates only one recognized species:
A. luteifluviistationis SM1504T (=KCTC 42716T=CCTCC
AB 2015348T) [11]. Strain SM1504T was isolated from sur-
face seawater of King’s Fjord, Arctic. However, to date, no
genomes of the genus Arcticibacterium have been reported,
their genomic compositions and metabolic pathways are still
lacking. In the study, we reported the first genome sequence
of the genus Arcticibacterium to better understand its sur-
vival strategy and ecological niche in the Arctic seawater.

Organism information
Classification and features
As the type strain of A. luteifluviistationis in the family
Cytophagaceae, strain SM1504T is a Gram-negative,
aerobic, non-motile and rod bacterium (Fig. 1). The
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yellow-pigmented colony was found after incubation at
20 °C for 2 days on a TYS agar plate. The strain could
utilize glycerol, D-xylose, D-glucose, D-fructose, dulcitol,
inositol D-mannitol, D-sorbitol, N-acetylglucosamine,
arbutin, aesculin, cellobiose, maltose, sucrose, trehalose,
starch, turanose and potassium gluconate for energy and
growth, which were summarized in Table 1. Then it hy-
drolyzed aesculin, gelatin, tyrosine, Tween 20, 40 and 60
but did not hydrolyze DNA, agar, casein, elastin, lecithin,
starch, Tween 80. In addition, various enzymes such as
alkaline phosphatase, esterase (C4), esterase lipase (C8),
leucine arylamidase, valine arylamidase, cystine arylami-
dase, trypsin and glucosidase were produced for degrad-
ing organic matter [11]. The phylogenetic placement of
strain SM1504T (based on complete 16S rRNA gene se-
quence) through neighbor-joining phylogenetic tree was
identified (Fig. 2). It formed a distinct phylogenetic
branch within the family Cytophagaceae and closely rela-
tives were species of the genera Lacihabitans, Emticicia,
Fluviimonas and Leadbetterella with low sequence simi-
larities between 88.9 and 91.6%.

Genome sequencing information
Genome project history
Isolated from an extreme Arctic environment, A. luteifluviis-
tationis SM1504T was selected for genome sequencing to
elucidate the special abilities of adapting to diverse extreme
stresses. We have accomplished the genome sequencing of
strain SM1504T as reported in this paper. The complete
genome data has been deposited in the GenBank database
under the accession number CP029480.1. The project infor-
mation and its association with MIGS are provided in
Table 2 [12].

Growth conditions and genomic DNA preparation
A. luteifluviistationis SM1504T was cultivated in TYS
broth at 20 °C. After cultivation for two days, genomic
DNA for sequencing was extracted by using a commer-
cial bacterial DNA isolation kit (OMEGA).

Fig. 1 Transmission electron micrographs of Arcticibacterium
luteifluviistationis SM1504T cultured on TYS broth medium. Scale bar, 0.5 μm

Table 1 Classification and general features of Arcticibacterium
luteifluviistationis SM1504T [12]

MIGS ID Property Term Evidence codea

Classification Domain Bacteria TAS [28]

Phylum Bacteroidetes TAS [29, 30]

Class Cytophagia TAS [30, 31]

Order Cytophagales TAS [32, 33]

Family Cytophagaceae TAS [32, 34]

Genus Arcticibacterium TAS [11]

Species Arcticibacterium
luteifluviistationis

TAS [11]

Strain: SM1504T TAS [11]

Gram stain Negative TAS [11]

Cell shape Rod TAS [11]

Motility Non-motile TAS [11]

Sporulation Not reported

Temperature
range

4–30 °C TAS [11]

Optimum
temperature

20 °C TAS [11]

pH range;
Optimum

6.0–7.5; 6.5–7.0 TAS [11]

Carbon
source

glycerol, D-xylose, D-glucose,
D-fructose, dulcitol, inostiol
D-mannitol, D-sorbitol,
N-acetylglucosamine, arbutin,
aesculin, cellobiose, maltose,
sucrose, trehalose, starch,
turanose and potassium
gluconate

TAS [11]

MIGS-6 Habitat seawater TAS [11]

MIGS-6.3 Salinity 0–4% NaCl (w/v) TAS [11]

MIGS-22 Oxygen
requirement

Aerobic TAS [11]

MIGS-15 Biotic
relationship

Free-living NAS

MIGS-14 Pathogenicity Non-pathogen NAS

MIGS-4 Geographic
location

King’s Fjord, Arctic TAS [11]

MIGS-5 Sample
collection

2014 TAS [11]

MIGS-4.1 Latitude Not reported

MIGS-4.2 Longitude Not reported

MIGS-4.4 Altitude Not reported
aEvidence codes -TAS Traceable Author Statement, NAS Non-traceable Author
Statement. These evidence codes are from the Gene Ontology project [35]
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Fig. 2 Neighbor-joining phylogenetic tree based on 16S rRNA gene sequences, showing the relationships of Arcticibacterium luteifluviistationis
SM1504T and its taxonomic neighbors. Rhodothermus marinus DSM 4252T was used as as the outgroup. Bootstrap values (> 70%) based on 1000
replicates are shown at nodes. Bar, 0.02 substitutions per nucleotide position

Table 2 Project information

MIGS ID Property Term

MIGS 31 Finishing quality Complete

MIGS-28 Libraries used Two genomic libraries: one Illumina library, one PacBio standard library

MIGS 29 Sequencing platforms Illumina Hiseq 2500, PacBio RS

MIGS 31.2 Fold coverage 315× Illumina, 45× PacBio

MIGS 30 Assemblers SOAPdenovo v. 2.04; HGAP v. 2.3.0

MIGS 32 Gene calling method Prodigal

Locus Tag SM1504

Genbank ID CP029480.1

GenBank Date of Release June 20, 2018

GOLD ID Not registered

BIOPROJECT PRJNA471374

MIGS 13 Source Material Identifier KCTC 42716T=CCTCC AB 2015348T

Project relevance Environmental, microbes
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Genome sequencing and assembly
Genome sequencing was performed on both the Illumina
Hiseq and the PacBio RS sequencing platforms. 400-bp
Illumina paired-end libraries and 20-kb PacBio libraries
were constructed and sequenced yielding 315 × and 45 ×
average coverages, respectively (Table 2). About 1.69 Gb
and 243Mb data from the Illumina and PacBio sequencing
were assembled using SOAPdenovo [13, 14] and HGAP
[15]. The final assembly resulted in one scaffold.

Genome annotation
Coding gene sequences were predicted and annotated
through Prodigal v2.6.3 [16] and RAST v2.0 [17]. Functional
categorization and carbohydrate-active enzymes CAZy of
the predicted genes were annotated against EggNOG and
CAZy databases, respectively. Then rRNAs and tRNAs were
predicted by RNAmmer v1.2 [18] and tRNAscan-SE v1.3.1
[19]. In addition, the CARD analyses were performed to find
resistance genes. Genomic islands and secondary metabolite
biosynthesis were predicted through IslandViewer 4 [20]
and antiSMASH [21].

Genome properties
The total size of the genome of A. luteifluviistationis
SM1504T is 5,379,839 bp with an average GC content of
37.20% (Fig. 3). Total 4595 protein-coding genes (CDSs)
were identified, which occupied 89.73% of the genome.

Therein, 3045 CDSs were annotated with putative func-
tions and 1550 CDSs matched hypothetical proteins
(Table 3). Then 4 rRNAs and 36 tRNAs were found in
the genome. CRISPR repeat, transmembrane helice, sig-
nal peptide and Pfam protein family predictions were

Fig. 3 Circular map of the Arcticibacterium luteifluviistationis SM1504T genome. From the outside to the center: CDSs on forward strand (colored
by COG categories), CDSs on reverse strand (colored by COG categories), RNA genes (tRNAs and rRNAs), G + C content and GC skew

Table 3 Genome statistics

Attribute Value % of Total

Genome size (bp) 5,379,839 100

DNA coding (bp) 4,827,135 89.73

DNA G + C (bp) 2,029,275 37.20

DNA scaffolds 1 100.00

Total genes 4635 100.00

Protein coding genes 4595 99.14

RNA genes 40 0.86

Pseudo genes 0 0

Genes in internal clusters NA NA

Genes with function prediction 3045 65.70

Genes assigned to COGs 3319 71.61

Genes with Pfam domains 3617 78.04

Genes with signal peptides 693 14.95

Genes with transmembrane helices 988 21.32

CRISPR repeats 4 0.09

NA, not applicable
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done. In addition, distribution of genes into COG func-
tional categories was shown in Table 4.

Insights from the genome sequence
Adaption to diverse stresses
Strain SM1504T genome owned two putative gene clusters
for secondary metabolite biosynthesis. The cluster 1
belonged to terpene type - the largest group of natural prod-
ucts [22], matching the carotenoid biosynthesis. The cluster
2, affiliated to arylpolyene type, was predicted to produce
flexirubin. Furthermore, we found that the yellow-pigmented
strain SM1504T harbors a complete set of genes required for
zeaxanthin biosynthesis (e.g., isopentenyl-diphosphate delta-
isomerase, phytoene synthase, phytoene dehydrogenase, lyco-
pene cyclase and beta-carotene hydroxylase), which was
commonly detected in other species of the phylum Bacteroi-
detes [23, 24]. The pigment maybe help the strain to obtain
energy and for cold adaption and ultraviolet light protection
in the Arctic environments [25].
A total of 150 resistance genes were found to encode 24

kinds of antibiotics (such as gentamicin, kanamycin, tetra-
cycline and streptomycin), which was consistent with the

experimental antibiotic susceptibility results [11]. The genes
encoding heat shock proteins dnaK and cold shock protein
cspA were detected in the genome. In line with this,
SM1504T had a wider growth temperature ranges (4–30 °C)
[11]. Besides, the genome harbored several genes coding for
catalase and superoxide dismutase to assist the strain at cel-
lular and molecular levels in dealing harsh radiation in the
Arctic. Dozens of genes related to osmotic stress (such as
choline and betaine uptake and betaine biosynthesis) and
carbon starvation responses were discovered in the A. lutei-
fluviistationis genome, which would endow cells with toler-
ance to hyperhaline and oligotrophic environments.
As another feature, a 245-kb genomic island coding

for 208 genes was predicted. Therein, 9 genes encoded
proteins related to glucide biosynthesis, such aslipopoly-
saccharide core biosynthesis glycosyltransferase (lpsD),
UDP-glucose dehydrogenase and capsular polysacchar-
ide synthesis enzyme (Cap8C). In addition, the presence
of transposases, integrases and mobile element proteins
indicated that gene transfer has occurred in the A. lutei-
fluviistationis SM1504T genome [26]. Also, phage tail
fiber proteins were predicted, which was in line with the

Table 4 Number of genes associated with general COG functional categories

Code Value %age Description

J 148 3.19 Translation, ribosomal structure and biogenesis

A 0 0 RNA processing and modification

K 180 3.88 Transcription

L 121 2.61 Replication, recombination and repair

B 0 0 Chromatin structure and dynamics

D 17 0.37 Cell cycle control, Cell division, chromosome partitioning

V 68 1.47 Defense mechanisms

T 154 3.32 Signal transduction mechanisms

M 273 5.89 Cell wall/membrane biogenesis

N 3 0.06 Cell motility

U 29 0.63 Intracellular trafficking and secretion

O 129 2.78 Posttranslational modification, protein turnover, chaperones

C 201 4.34 Energy production and conversion

G 229 4.94 Carbohydrate transport and metabolism

E 211 4.55 Amino acid transport and metabolism

F 68 1.47 Nucleotide transport and metabolism

H 83 1.79 Coenzyme transport and metabolism

I 85 1.83 Lipid transport and metabolism

P 224 4.83 Inorganic ion transport and metabolism

Q 45 0.97 Secondary metabolites biosynthesis, transport and catabolism

R 0 0 General function prediction only

S 1080 23.30 Function unknown

– 1286 27.75 Not in COGs

The total is based on the total number of protein coding genes in the genome
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analysis by PHAST [27] that a 15-kb incomplete pro-
phage region could encode phage tail fiber proteins in
the genome.

Degradation and utilization of carbohydrates
Totally, 3319 (71.61%) genes could be assigned a COG
function, of which the wall/membrane/envelope biogen-
esis (5.89%), carbohydrate transport and metabolism
(4.94%) and inorganic ion transport and metabolism
(4.83%) were enriched (Table 4). The high percentage of
proteins related to carbohydrate transport and metabolism
suggested that the strain SM1504T could use various car-
bohydrates. On the other hand, the analyses from dbCAN
showed that the strain SM1504T possessed 341 genes
which encoded carbohydrate metabolism enzymes, in-
cluding 69 carbohydrate esterases (11 families), 125 glyco-
side hydrolases (46 families), 62 glycosyltransferases (22
families), 17 polysaccharide lyases (6 families), 12 auxiliary
activities (3 families) and 56 carbohydrate-binding mod-
ules (15 families). Therein, a variety of enzymes are related
to the degradation of macromolecular polysaccharides
(e.g., xylanase, chitinase, mannanase, alpha amylase, endo-
glucanase, glucoamylase and alginate lyase) derived from
marine macroalgae and phytoplankton. Those polysac-
charases could hydrolyze a variety of macromolecular
polysaccharides into small molecules that can be absorbed
and metabolized by strain SM1504T and other microor-
ganisms in the seawater [4, 5].

Conclusions
The genomic analyses showed that the strain
SM1504T could adapt to extreme Arctic seawater
environments, such as high solar radiation, cold
temperature and high salinity. Besides, it may act as a
vital macromolecular polysaccharide decomposer and
would play an important role in organic carbon cyc-
ling in the Arctic seawater ecosystem.
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