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Abstract

Microbiome sequencing has become the standard procedure in the study of new ecological and human-
constructed niches. To our knowledge, this is the first report of a metagenome from the water of a greenhouse
drain. We found that the greenhouse is not a diverse niche, mainly dominated by Rhizobiales and Rodobacterales.
The analysis of the functions encoded in the metagenome showed enrichment of characteristic features of soil and
root-associated bacteria such as ABC-transporters and hydrolase enzymes. Additionally, we found antibiotic
resistances genes principally for spectinomycin, tetracycline, and aminoglycosides. This study aimed to identify the
bacteria and functional gene composition of a greenhouse water drain sample and also provide a genomic
resource to search novel proteins from a previously unexplored niche. All the metagenome proteins and their
annotations are available to the scientific community via http://microbiomics.ibt.unam.mx/tools/metagreenhouse/.
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Introduction
All the environments in the world contain millions of mi-
croorganisms. However, most of them are uncultivable, dif-
ficulting their study under laboratory conditions using
traditional culture techniques. In contrast, the rapid devel-
opment of sequencing technologies and the lower of their
associated costs has allowed exploring the microbial com-
position of almost any ecological niche using metagenomic
approaches, ranging from human gut to hot springs [1–3].
In this regard, metagenomic approaches have been used to
answer two central questions: (i) which microorganisms are
present and (ii) what is their functional contribution [4].
Metagenomic has opened the opportunity to find new mi-
crobial phyla [5] and novel protein families in previously
unexplored niches [6], due to uncultivable microorganisms
from there. Thus, the metagenomic resource provides the
capacity of bioprospecting on the discovery of novel
enzymes for research or industrial applications [7].
According to this idea, some new challenges in func-
tional metagenomics, phylogenomics, ecology, and

biotechnology have emerged. There are numerous appli-
cations of metagenomic analysis, ranging from prevention
of diseases to solve industrial problems [8]. In recent
years, the scientific community has tried to identify the
role that microbial communities have in several disciplines
such as human health [9, 10], and industry [11–13]. Meta-
genomics also has been applied to explore the impact of
microorganisms in human-constructed niches [11, 14].
A greenhouse is an ecological niche entirely human

manipulated, with the continuous exposure to pesticides,
fertilizers, antibiotics and different chemicals for
research purposes. Thus, subjecting the microbial com-
munities under selective pressures. These effects can be
analyzed using the high throughput sequencing methods.
This allowed us the possibility to design new strategies for
monitoring the microbial evolution of the structure and
dynamics in particular human-constructed niches such as
a greenhouse, plus comparing it to similar conditions
somewhere else and eventually trace back any emerging
problem. To our knowledge, this is the first report of
a shotgun metagenome from a water sample of a
greenhouse drain. Our work aimed to determine the
microbial and functional composition of the water
from a greenhouse drain. Our results indicated that
this environment has low bacterial diversity, mainly
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dominated by Alphaproteobacteria, which is com-
posed of Rhizobiales and Rhodobacterales orders.
Interestingly, we found several antibiotic resistance
genes and a functional enrichment for de novo amino
acid synthesis in the metagenome.

Site information
The sampling site corresponds to the water of a green-
house drain. The greenhouse is on the top of a building,
located at the Institute of Biotechnology (IBt) of the
National Autonomous University of Mexico (UNAM), in
Cuernavaca City in México. The greenhouse is used for
the cultivation of several plant species for research
purposes.

Metagenome sequencing information
Metagenome project history
The collected sample was part of a pilot project to
identify the novel bacterial composition of the water in
the experimental greenhouse drain at the Institute of
Biotechnology (IBt) of the National Autonomous
University of Mexico (UNAM). We deposited the se-
quencing reads in the NCBI under the SRA accession
number SRR5689218 and SRR5689219 and the
Bioproject PRJNA390663. Additionally, the reads
were uploaded to the MG-RAST server under the ids
mgm4717011.3, mgm4717032.3, mgm4716707.3,
mgm4716832.3, mgm4716680.3, mgm4716681.3,
mgm4716833.3, mgm4717034.3. For more details see
the study information in Table 1.

Sample information
We collected the sample on 14 September 2015 at
18:00 h (GMT-5) at the IBt (Latitude: 18.918611,
Longitude: − 99.234167). In Table 2 the sample informa-
tion according to the minimal information standards is
showed [15].

Sample preparation, DNA extraction, library generation,
and sequencing technology
Sample preparation (collection, transport, and storage)
A sample of 170 ml of water was directly collected from
the greenhouse drain and immediately transported to
the laboratory, located in the same building. Microbes
were obtained by filtering this water through a sterilized
PTFE 0.45 μm filter (Cat. 728–2045, Nalgene, NY, USA)
using a vacuum pump. After filtration, we extracted the
total DNA from the membranes.

DNA extraction (kits used, protocols used)
Total DNA was recovered from the filter membrane by
shaking the filter for 5 min in a tube containing lysis so-
lution and beads from ZR Soil Microbe DNA MicroPrep
Kit (Cat. D6003 Zymo Research, Irvine, CA, USA). The
following steps for DNA isolation were carried out
following the manufacturer’s instructions for the ZR Soil
Microbe DNA kit. After extraction, we assessed the
DNA quality by agarose gel electrophoresis and quantity
determined by the Thermo Fisher Qubit High-sensitivity
fluorometric assay (Cat. Q32851, Life Technologies,
Carlsbad, CA, USA).

Library generation (kits used, protocols used)
We constructed two DNA libraries containing different
insert sizes: Drain-A and Drain-B with an insert size of
400 and 2000 bp, respectively (Table 3). Furthermore,
different amounts of input DNA were used to construct
the libraries: 1 ng for Drain-A and 25 ng for Drain-B.
Both libraries were created following the manufacturer’s
instructions for the Nextera XT DNA Library Prepar-
ation kit (Cat. FC-131-1024, Illumina, CA, USA). First,
DNA was fragmented (tagmented) using the Nextera
transposase. Second, the tagmented DNA was amplified
using 12 PCR cycles to add the Index 1 (i7), Index 2 (i5),
and full adapter sequences. The program on the thermal
cycler was as follows: 72 °C for 3 min, 95 °C for 30 s;
12 cycles (95 °C for 10 s, 55 °C for 30 s and 72 °C for
30 s) and 72 °C for 5 min. After PCR amplification, both
libraries were carefully size selected using Agencourt

Table 1 Study information

Label Greenhouse Drain-IBt

MG-RAST ID mgm4717011.3, mgm4717032.3,
mgm4716707.3, mgm4716832.3,
mgm4716680.3, mgm4716681.3,
mgm4716833.3, mgm4717034.3

SRA ID SRR5689218 (Drain A)
SRR5689219 (Drain B)

Study NA

GOLD ID (sequencing project) NA

GOLD ID (analysis project) NA

NCBI BIOPROJECT PRJNA390663

Relevance Water drain sample

Table 2 Sample information

Label Greenhouse Drain-IBt

GOLD ID (biosample) NA

Biome Culturing environment

Feature Water of greenhouse drain system

Material Water

Latitude and Longitude 18.918611, −99.234167

Vertical distance 1510 m over sea level

Geographic location Cuernavaca, Morelos. México

Collection date and time 14/09/15, 18:00 h (GMT-5)
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Ampure XP beads (Cat. A63882, Beckman Coulter, CA,
USA) and the size was verified using a DNA Agilent
Bioanalyzer 2100 (Cat. 5067–1504, Agilent Technolo-
gies, CA, USA).

Sequencing technology
The Illumina NextSeq 500 Mid Output cell was used for
sequencing in a 2 × 150 bp paired-end format, resulting
in a total of 7,378,202 of reads for a sum of 11 Gbp of
DNA data. Each sample yielded 6,976,736 and 401,466
of reads for Drain-A and Drain-B libraries, respectively
(Table 4).

Sequence processing, annotation, and data analysis
Sequence processing
Pair-end raw reads were quality filtered using Dynamic-
Trimm [16]. To this end, we eliminated the barcodes
and primers, removed the reads containing ambiguous
bases and trimmed the sequences with quality >Q20
(6 bp sliding window). We mapped the raw reads against
Homo sapiens genome (GRCh38) using BWA with de-
fault parameters [17] to remove human DNA for down-
stream analysis.

Metagenome processing
All the quality-filtered reads of the two libraries were
used to construct two de novo metagenomic assemblies,
one using IDBA-UD [18] with 20–125 of k-mer length
range and other using MetaSpades [19] with a k-mer
range of 21–121 with steps of 10 (Table 5). After that,
we used Mummer (nucmer) with a cluster match of 80
nucleotides (contig coverage) and 99% of identity to
merge all the contigs of both assemblies [20]. The
merged metagenome was selected because it contained a
minor number of contigs and the best N50 and L50
among the others. The contigs were validated mapping
back the reads using BWA [17] with default parameters,
resulting 79% of the reads mapped back to the final as-
sembly with coverage of 26X [21]. This percentage and
coverage are adequate for a metagenome assembly [22].
All the contigs larger than 1 Kb were selected for gene
prediction and functional annotation, resulting in 7003
contigs with an N50 and N75 of 4246 and 1807 bp,
respectively.

Metagenome annotation
All classified reads (at different taxonomic levels) for
each library were merged into a single library (Green-
house Drain-IBt) to determine their relative

Table 4 Sequence processing

Label Greenhouse Drain-IBt
(merged library name)

Tool(s) used for quality control Fast QC, Dynamic Trimm

Number of sequences removed by
quality control procedures

169,936

Number of sequences that passed
quality control procedures

7,208,266

Number of artificial duplicate reads 664,856

Table 5 Metagenome statistics

Label Metagenome Label Comment

Libraries used Drain-A and Drain-B We performed the
assembly using all the
reads of the two libraries
that passed quality filters.

Assembly tool(s)
used

IDBA-UD and
MetaSpades and
merged with nucmer

20–125 of k-mer length
(IDBA-UD) 21–121
(MetaSpades)

Number of
contigs after
assembly

7003 These numbers
correspond to the best
assembly merged using
nucmer.

Number of
singletons after
assembly

N/A MetaSpades and IDBA-UD
were used in pre-
correction mode to
discard singletons
k-mers.

Total bases
assembled

859,091,400 Total base pairs in the
assembly.

Contig n50 4246

% of Sequences
assembled

97% The fraction of the input
data in the assembly.

Measure for %
assembled

79% The method used for
calculating % assembled
was determinate by read
mapping using BWA
(default parameters)
against final assembly
and considering the total
reads (7,208,266 reads)

Table 3 Library information

Label Drain-A Drain-B

Sample Label(s) Drain-A Drain-B

Sample prep method ZR Soil Microbe
DNA (Zymo)

ZR Soil Microbe
DNA (Zymo)

Library prep method(s) Nextera XT Nextera XT

Sequencing platform(s) Illumina
NextSeq 500

Illumina
NextSeq 500

Sequencing chemistry V2 SBS Kit V2 SBS Kit

Sequence size (GBp) 10.4GBp 0.60GBp

Number of reads 6,976,736 401,466

Single-read or paired-end
sequencing?

Paired-end Paired-end

Sequencing library insert size 500 bp 2000 bp

Average read length 150 bp 150 bp
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abundances. After that, all quality-filtered reads were
functionally and taxonomically classified using
the MG-RAST server [23]. The annotations are avail-
able under the accession numbers mgm4717011.3,
mgm4717032.3, mgm4716707.3, mgm4716832.3,
mgm4716680.3, mgm4716681.3, mgm4716833.3,
mgm4717034.3. The taxonomic and functional classi-
fication was performed with MG-RAST server using
the RefSeq and SEED subsystem databases with default pa-
rameters, respectively (Table 6). Normalized raw count was
used to determine the relative abundances of reads for each
taxonomic level, using an in-house developed Perl script.

Additionally, the reads were also taxonomically classified by
Kraken [24] using the RefSeq bacterial database from NCBI
(ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/). Taxo-
nomic abundances were calculated using an in-house
developed Perl script based on the number of reads
for each taxonomic group. Furthermore, the reads
were also functionally annotated by HUMAnN2 using
the UniRef90 database. The taxonomic association in
HUMAnN2 [25] was performed with Meta PhlAn2
using ChocoPhlAn database.

Table 6 Annotation parameters

Label Metagenome Label Comment

Annotation
system

Drain-IBt The functional annotation
using the reads was
obtained using MG-RAST,
Kraken, and HUMAnN2,
while the functional
protein annotation of the
assembly was obtained
from GO, InterPro, and
KEGG using Blast2GO.

Gene calling
program

Frag Gene Scan FragGeneScan was
training with Illumina
reads.

Annotation algorithm

Database(s)
used

RefSeq, SEED,
ChocoPhlAn, UniRef90,
Interpro (data bases) Blast
NR data base

Table 7 Metagenome properties

Label Metagenome
label

Comment

Number of contigs 7003

GBp 11.0 GBp

Number of features
identified

25,735 Total number of
predicted protein features
from the assembly

CDS 21,700 Total number of proteins
annotated by Blast2GO
and Interpro.

rRNA 18,612 Total number of reads
determined as ribosomal
genes using RiboPicker
version 0.4.3.

CDSs with GO 14,328 Number of proteins with
GO terms.
Number of reads mapped
to a protein.

CDSs with UniRef90 1,619,062

CDS with SEED subsystem 786,622

Alpha diversity 2.04 and 1.99 Alpha diversity was
determinate at order level
comparing MG-RAST and
Kraken results. Shannon
index was measured
using Phyloseq.

Table 8 Taxonomic composition

Phylum Greenhouse MG-RAST Greenhouse Kraken

Acidobacteria 0.0015405 0.0012883

Actinobacteria 0.0267721 0.0316892

Aquificae 0.0003382 0.0000208

Armatimonadetes NA 0.0000139

Bacteroidetes 0.0208696 0.0049244

Chlamydiae 0.0002807 0.0000231

Chlorobi 0.0012536 0.0005910

Chloroflexi 0.0030123 0.0010620

Chrysiogenetes 0.0003128 0.0001454

Crenarchaeota NA 0.0001524

Cyanobacteria 0.0047115 0.0015376

Deferribacteres 0.0002573 0.0000185

Deinococcus-Thermus 0.0024569 0.0021171

Dictyoglomi 0.0000570 NA

Elusimicrobia 0.0000478 NA

Euryarchaeota NA 0.0005772

Fibrobacteres 0.0000351 0.0000277

Firmicutes 0.0107219 0.0047444

Fusobacteria 0.0002528 0.0000300

Gemmatimonadetes 0.0003763 0.0001316

Ignavibacteriae NA 0.0000162

Lentisphaerae 0.0001322 NA

Nitrospirae 0.0001816 0.0001247

Planctomycetes 0.0019784 0.0006049

Proteobacteria 0.9125950 0.9467869

Spirochaetes 0.0007344 0.0008519

Synergistetes 0.0005554 0.0000139

Tenericutes 0.0000585 0.0001893

Thermodesulfobacteria NA 0.0000231

Thermotogae 0.0004699 0.0001732

Verrucomicrobia 0.0099982 0.0021217

Relative abundances at phylum level using MG-RAST and Kraken, Relative
abundances were determinate using the normalized number of reads of each
order divided into the total number of reads
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Post-processing
Final contigs of the metagenome were used to predict
25,735 proteins by FragGeneScan (Table 7) [26]. Out of
the total of predicted proteins, 21,700 were functionally
annotated by Blast2GO PRO version 2.8 [27], using
BLASTp against NR, Gene Ontology (GOs) and Inter-
ProScan version 5.25 [28]. Antibiotic resistance genes
(ARGs) were determined using the antibiotic resistance
genes database (ARDB).

Metagenome properties
Shotgun sequence data generated a total of 7,378,202 of
reads that were quality processed (see Sequence process-
ing section) and got 7,206,754 of quality reads. Next, we
assigned the taxonomy classification to 1,966,261 reads
using MG-RAST and to 877,380 reads using Kraken,
both of them using the LCA method [29]. Additionally,
high-quality reads were used to obtain a de novo assem-
bly consisting of 7003 contigs with an N50 and N75 of
4246 and 1807 bp, respectively. The largest contig of the
assembly had 221,208 bp length (Table 5).

Taxonomic diversity
After using MG-RAST, we found that Proteobacteria
was the most abundant phylum with 91% of the reads,
followed by Actinobacteria (2.6%) and Bacteroidetes (2%)
(Table 8). Additionally, at the class level, Alphaproteo-
bacteria (74%) was highly present, and Gammaproteo-
bacteria (10%), Betaproteobacteria (6%), and
Actinobacteria (3%) showed the lowest abundances. The

Rhizobiales and Rhodobacterales orders (Alphaproteo-
bacteria) were the most abundant in the metagenome
(Fig. 1). Next, we used Kraken to compare the taxonomy
classification obtained by MG-RAST. Although Kraken
assigned a lower number of reads (877,380) than
MG-RAST (1,966,261), we found similar results in
taxonomy abundance. Proteobacteria was the most
abundant phylum (94%), followed by Actinobacteria
(3%) and Bacteroidetes (0.4%) (Table 8). Also, similar to
MG-RAST classification, Rhodobacterales and Rhizo-
biales orders were highly abundant. The most critical
difference in taxonomic classification between the two
algorithms was the number of orders identified,
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Acholeplasmatales
Acidimicrobiales
Acidithiobacillales
Acidobacteriales
Actinomycetales
Aeromonadales
Alteromonadales
Aquificales
Bacillales
Bacteroidales
Bdellovibrionales
Bifidobacteriales
Burkholderiales
Campylobacterales
Cardiobacteriales
Caulobacterales
Cellvibrionales
Chlamydiales

Chlorobiales
Chloroflexales
Chromatiales
Chroococcales
Chrysiogenales
Clostridiales
Coriobacteriales
Corynebacteriales
Cytophagales
Deferribacterales
Deinococcales
Desulfarculales
Desulfobacterales
Desulfovibrionales
Desulfuromonadales
Dictyoglomales
Elusimicrobiales
Enterobacteriales

Entomoplasmatales
Erysipelotrichales
Fibrobacterales
Flavobacteriales
Frankiales
Fusobacteriales
Gallionellales
Gemmatimonadales
Geodermatophilales
Gloeobacterales
Halanaerobiales
Herpetosiphonales
Hydrogenophilales
Ktedonobacterales
Lactobacillales
Legionellales
Lentisphaerales
Mariprofundales

Methylacidiphilales
Methylococcales
Methylophilales
Micrococcales
Micromonosporales
Mycoplasmatales
Myxococcales
Natranaerobiales
Nautiliales
Neisseriales
Nitrosomonadales
Nitrospirales
Nostocales
Oceanospirillales
Opitutales
Oscillatoriales
Parvularculales
Pasteurellales

Planctomycetales
Prochlorales
Propionibacteriales
Pseudomonadales
Pseudonocardiales
Puniceicoccales
Rhizobiales
Rhodobacterales
Rhodocyclales
Rhodospirillales
Rickettsiales
Rubrobacterales
Selenomonadales
Solibacterales
Solirubrobacterales
Sphaerobacterales
Sphingobacteriales
Sphingomonadales

Spirochaetales
Streptomycetales
Streptosporangiales
Synergistales
Syntrophobacterales
Thermales
Thermoanaerobacterales
Thermomicrobiales
Thermotogales
Thiotrichales
Verrucomicrobiales
Vibrionales
Xanthomonadales
Xanthomonadaless

Fig. 1 Bacterial abundance at order level. Relative abundance of bacterial orders classified by Kraken and MG-RAST

Table 9 Functional diversity

Level 2 category Relative Abundance

Vitamins 0.071243175

Protein biosynthesis 0.055205552

Central carbohydrate metabolism 0.052705254

ABC transporters 0.046491929

Lipids 0.043826646

Disease and Defense 0.037793615

Prophages 0.037587808

Branched-chain amino acids 0.033340704

Arginine 0.032626333

Lysine 0.031525862

Top ten of the most abundant functions annotated by MG-RAST against SEED
database. Relative abundances were determined normalizing by the total
number of reads
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MG-RAST identified 92 and Kraken 51 orders (Fig. 1).
To evaluate if this difference could impact on the micro-
bial alpha diversity metrics, we used the relative abun-
dance tables from MG-RAST and Kraken to measure
the richness (Simpson) and evenness (Shannon) using
Phyloseq [30]. This analysis showed a Shannon index of
2.04 and 1.99 for Kraken and MG-RAST, respectively
(Table 7). In contrast, the Simpson index was 0.75 and
0.69 for MG-RAST and Kraken, respectively. However,
these different values between MG-RAST and Kraken

were not significant, suggesting that there is no differ-
ence between both algorithms for alpha diversity classifi-
cation. The observed diversity metrics indicate that the
greenhouse water drain is not a diverse niche.

Functional diversity
Next, to know the encoded functions directly from the
reads we classified them using MG-RAST and
HUMAnN2. According to MG-RAST, we observed that
most abundant functions were related to vitamins, pro-
tein biosynthesis and central carbohydrate metabolism
(Table 9). In contrast, using HUMAnN2 the de Novo
nucleotide biosynthesis, vitamins, and prosthetic groups
were the most abundant functions (Table 10).

Additional results
We assembled the metagenome to get more insight into
the protein functional composition of the water sample.
In this regard, we used the contigs to predict 25,735 pro-
teins from which only 35.8% had significant blastp
match (E-value 10− 5) against the NR RefSeq proteins
database. The 64.2% of unknown proteins could repre-
sent novel proteins. A total of 14,328 (55.6%) proteins
were classified using Gene Ontology (GOs) using Blas-
t2GO and Interpro. We found that the term “transport”
in the Biological process category was the most abun-
dant function encoded in the greenhouse metagenome
(Fig. 2). To get insights on this observation, we found
that of the 2141 transporters annotated by Interpro,

Table 10 Functional diversity (UniRef90)

Pathway Relative
abundance

Gondoate biosynthesis 0.071311068

L-isoleucine biosynthesis I 0.058340078

Adenosine ribonucleotides de novo biosynthesis 0.05276

Superpathway of guanosine nucleotides de novo
biosynthesis I

0.039785498

L-valine biosynthesis 0.037358283

Guanosine ribonucleotides de novo biosynthesis 0.029089431

Superpathway of pyrimidine deoxyribonucleotides
de novo biosynthesis

0.027701595

5-aminoimidazole ribonucleotide biosynthesis II 0.026628851

Superpathway of L-threonine biosynthesis 0.026026654

Mycolate biosynthesis 0.02416827

Top ten of most abundant function annotated by HUMAnN2 against UniRef90
database. Relative abundances were determined normalizing by the total
number of reads

Cellular Component

plasma membrane (549)

mitochondrion (589)

intracellular organelle part (650)

integral component of membrane 
(1,264)

M olecu lar  Funct ion

ATP binding (1,388)

DNA binding (1,398)

oxidoreductase activity (2,187)

hydrolase activity (2,457)

transferase activity (2,257)

macromolecular complex (805)

B i o l o g i c a l  P r o c e s s
regu la t ion  o f  nuc leobase -con ta in ing  
com pound  m e tabo l ic  p rocess  (1 ,048 )

regu la t ion  o f  ce l lu la r  m acrom o lecu le  
b iosyn the t ic  p rocess  (1 ,062 )

t ransc r ip t ion ,  D N A -tem p la ted  (1 ,063 )

regu la t ion  o f  gene  exp ress ion  (1 ,094 )

p ro te in  m e tabo l ic  p rocess  (1 ,212 )

s ing le -o rgan ism  b iosyn the t ic  p rocess  
(1 ,4 5 9 )

response  to  s t im u lus  (1 ,475 )

t ra n sp o r t  (2 ,1 4 1 )

ox ida t ion -reduc t ion  p rocess  (1 ,863 )

o rg a n o n i t ro g e n  co m p o u n d  b io syn th e t ic  
p rocess  (1 ,645 )

ca rboxy l ic  ac id  m e tabo l ic  p rocess  
(1 ,4 8 4 )

Fig. 2 Gene Ontology (GO) terms distribution. The pie graphs show the number of genes annotated for cellular component, biological process,
and molecular function categories
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the 17.23% (369 proteins) are ABC-type transporters.
Interestingly, has been reported that Rhizobiales has
enriched the ABC transporter genes in their genomes
(Fig. 2) [31, 32]. Furthermore, we use KAAS-KEGG [33]
to identify the pathways containing ABC-transporters.
After that, we only found six complete pathways in the
greenhouse metagenome such as the vitamin B12 trans-
porter (Fig. 3). Interestingly, the ABC-transporters were
also present when we used only the reads for functional
analysis (Table 9 and Table 10). Additionally, the hydro-
lase, transferase, and oxidoreductase were the most abun-
dant GO molecular functions (Fig. 2). This result was in
agreement with reports in which rhizobial bacteria associ-
ated with the nodules and seed of plants has many genes
for these molecular functions in their genomes [34].
Finally, we searched for Antibiotic Resistance Genes

(ARGs) in the metagenome, using the ARDB database
[35]. We found a total of 31 ARGs and the most abun-
dant genes were for resistance to spectinomycin (16%),
tetracycline (12%) and aminoglycosides (9%) (Table 11).
These findings are consistent with previous studies in
chicken and vegetable greenhouse soil samples [36].
Although ARG genes are common in most ecological
niches more investigation is needed to explore the role
that these genes could play in microbial dynamics of
human-constructed niches such as the greenhouse.
Furthermore, these ARGs genes could be used for fur-
ther analysis in phylogenomics to aim their evolutionary
history and trace the adquision of these genes [37].

Conclusions
The use of metagenomic approaches to characterize new
environments such as a research-greenhouse has the
potential to unveil novel bacterial dynamics, enzyme
functions, and metabolic pathways. To the best of our

knowledge, this is the first report of the bacterial and
functional contribution of the water from a greenhouse
drain. We consider it exemplifies how the utilization of
a metagenomic approach provides a more comprehen-
sive view regarding the structure and functional compos-
ition of a bacterial community. Our results indicated
that soil Rhizobiales bacteria and their genome functions
mainly dominate the greenhouse water drain. This study

Fig. 3 KEGG pathways associated with ABC-transporters. KEGG pathways of the ABC-transporters with all genes present in the metagenome

Table 11 Antibiotics resistance genes

Type Number
of genes

Resistance

vatb, aad9ib,
aph6ic

5 Spectinomycin

tetpb, tetm,
tetx

4 Tetracycline

emre 3 Aminoglycoside

aac3ia 3 Astromicin, Gentamicin, Sisomicin

baca 3 Bacitracin

ceob, catb1 2 Chloramphenicol

cara, tlrc 2 Lincosamide, Macrolide, Streptogramin_b

acrb 1 Acriflavin, Aminoglycoside, beta_lactam,
Glycylcycline

bl2d_oxa2 1 Cloxacillin, Penicillin

mexd 1 Erythromycin, Fluoroquinolone, Glycylcycline,
Roxithromycin

fosa 1 Fosfomycin

ksga 1 Kasugamycin

macb 1 Macrolide

pbp1b 1 Penicillin

arna 1 Polymyxin

dfra26 1 Trimethoprim
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aimed to identify the bacteria and functional gene
composition of a greenhouse water drain sample and
also represent a genomic resource to search novel pro-
teins from a previously unexplored niche. Interestingly,
we found over 400 proteins containing unintegrated
signatures, which are highly conserved domains with
unknown function according to Interpro, representing
potential novel enzymes. All the metagenome proteins
and their annotations are available to the scientific com-
munity via http://microbiomics.ibt.unam.mx/tools/meta-
greenhouse/.
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