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Abstract

The genus Marinobacterium belongs to the family Alteromonadaceae within the class Gammaproteobacteria and was
reported in 1997. Currently the genus Marinobacterium contains 16 species. Marinobacterium rhizophilum CL-YJ9T was
isolated from sediment associated with the roots of a plant growing in a tidal flat of Youngjong Island, Korea. The
genome of the strain CL-YJ9T was sequenced through the Genomic Encyclopedia of Type Strains, Phase I: KMG project.
Here we report the main features of the draft genome of the strain. The 5,364,574 bp long draft genome consists of 58
scaffolds with 4762 protein-coding and 91 RNA genes. Based on the genomic analyses, the strain seems to adapt to
osmotic changes by intracellular production as well as extracellular uptake of compatible solutes, such as ectoine and
betaine. In addition, the strain has a number of genes to defense against oxygen stresses such as reactive oxygen
species and hypoxia.
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Introduction
The genus Marinobacterium within the family Alteromona-
daceae was established in 1997 by González et al. [1].
Currently the genus Marinobacterium contains 16 species
with validly published names (Fig. 1). All Marinobacterium
strains have been isolated from marine environments [1–
11] such as sea water, tidal flat, deep-sea sediment, and coral
mucus. Interestingly, their habitats include tropical waters
[12, 13], Arctic marine sediment [7], tidal flats [4, 11] as well
as deep sea sediment [10], indicating that the genus has well
adapted to diverse environments. In the GOLD database
[14], genome sequencing of 38 strains from 11 Marinobac-
terium species are identified to be finished or in progress.
In addition, six genome sequences from five species

(M. jannaschii, M. litorale, M. rhizophilum, M. stanieri and
M. profundum) and one unidentified strain are found in the
GenBank database. Among them, genomic features of M.
rhizophilum CL-YJ9T (=DSM 18822=KCCM 42386T), iso-
lated from the rhizosphere of a plant Suaeda japonica inha-
biting a coastal tidal flat, Korea, will be presented here.

Organism information
Classification and features
By phylogenetic analysis of the 16S rRNA gene se-
quence (Fig. 1), M. rhizophilum strain CL-YJ9T was
positioned within the genus Marinobacterium and
formed a distinct branch together with Marinobacter-
ium profundum PAMC 27536T and Marinobacterium
nitratireducens CN44T (Fig. 1). Strain CL-YJ9T was
most closely related to Marinobacterium profundum
PAMC 27536T, which appeared as its sister species in
the tree. Strain CL-YJ9T grows under strictly aerobic
conditions (Table 1). The optimal growth of strain
CL-YJ9T occurs at pH 7.0, with a growth range of
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pH 6.0–9.0. Growth occurs in the presence of 1.0–
5.0% (w/v) NaCl (optimum 3.0%) and at 5–30 °C
(optimum 25 °C) (Table 1). Cells of strain CL-YJ9T

are rod-shaped, on average approximately 0.3–0.4 μm
wide and 0.6–0.8 μm long and motile by means of
monopolar flagella (Fig. 2).

Genome sequencing information
Genome project history
The strain CL-YJ9T was chosen for genome sequencing by
the phylogeny-based selection [15, 16] as a part of the
Genomic Encyclopedia of Type Strains, Phase I: the KMG
project [17]. The KMG project, the first of the production
phases of the GEBA: sequencing a myriad of type strains
initiative [18, 19] and a Genomic Standards Consortium
project [20] was set up to increase the sequencing cover-
age of key reference microbial genomes and to generate a
large genomic basis for the discovery of genes encoding
novel enzymes [21]. The genome sequencing, finishing
and annotation were performed by the DOE-JGI using
state of the art sequencing technology [22]. A summary of
the project information is presented in Table 2.

Growth conditions and genomic DNA preparation
M. rhizophilum strain CL-YJ9T was grown in DSMZ
medium 514 (http://www.dsmz.de) at 28 °C and aerobe
conditions. Genomic DNA was isolated using Jetflex
Genomic DNA Purification Kit (GENOMED 600100)
following the standard protocol provided by the manu-
facturer but additionally applying 50 μl proteinase K and
using a 60 min incubation time. DNA is available
through the DNA Bank Network [23].

Genome sequencing and assembly
Using the purified genomic DNA, the draft genome of
M. rhizophilum CL-YJ9 T was generated at the DOE-JGI
using the Illumina technology [24]. An Illumina standard
shotgun library was constructed and sequenced using
the Illumina HiSeq 2000 platform which generated
7,253,734 reads totaling 1088.1 Mbp. All general aspects
of library construction and sequencing performed at the
JGI can be found at the JGI website. All raw Illumina
sequence data was passed through DUK, a filtering pro-
gram developed at JGI, which removes known Illumina
sequencing and library-preparation artifacts [25]. The

Fig. 1 Neighbour-joining phylogenetic tree, based on 16S rRNA gene sequences, showing the relationships between strain CL-YJ9T, members of the
genus Marinobacterium and other related genera. Bootstrap percentages >60% (based on 1000 resamplings) are shown below or above the corresponding
branches. Solid circles indicate that the corresponding nodes are also recovered in the maximum-likelihood and maximum-parsimony trees. Terasakiella
pusillum IFO 13613T (AB006768) was used as an outgroup. Bar, 0.02 nucleotide substitutions per site
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following steps were then performed for assembly: (1)
filtered Illumina reads were assembled using Velvet (ver-
sion 1.1.04) [26], (2) 1–3 Kbp simulated paired end reads
were created from Velvet contigs using wgsim (https://
github.com/lh3/wgsim), (3) Illumina reads were assem-
bled with simulated read pairs using Allpaths–LG

(version r41043) [27]. Parameters for assembly steps were
exactly same as in Choi et al. [28]. The final draft assembly
contained 68 contigs in 58 scaffolds. The total size of the
genome is 5.4 Mbp and the final assembly is based on
638.1 Mbp of Illumina data, which provides an average
119.1X coverage of the genome.

Genome annotation
As described in Choi et al. [28], identification of genes was
performed using Prodigal [29] as part of the DOE-JGI
Annotation pipeline [30, 31]. After translation of the

Table 1 Classification and general features of M. rhizophilum
CL-YJ9T [8, 9]

MIGS ID Property Term Evidence codea

Classification Domain Bacteria TAS [39]

Phylum Proteobacteria TAS [40]

Class Gammaproteobacteria TAS [41]

Order Alteromonadales TAS [42]

Family Alteromonadaceae TAS [43]

Genus Marinobacterium TAS [1]

Species Marinobacterium
rhizophilum

TAS [4]

Type strain CL-YJ9T TAS [4]

Gram stain Negative TAS [4]

Cell shape Straight rods TAS [4]

Motility Motile TAS [4]

Sporulation Not reported NAS

Temperature
range

5-30 °C TAS [4]

Optimum
temperature

25 °C TAS [4]

pH range;
Optimum

6.0-9.0; 7.0 TAS [4]

Carbon
source

Glucose, sucrose, mannose,
glycerol, glycine, mannitol

TAS [4]

MIGS-6 Habitat Sediment closely associated
with the roots of a plant
(Suaeda japonica)

TAS [4]

MIGS-6.3 Salinity 1-5% (optimum: 3%) TAS [4]

MIGS-22 Oxygen
requirement

Strictly aerobic TAS [4]

MIGS-15 Biotic
relationship

Microbiota of the rhizome of
Suaeda japonica

TAS [4]

MIGS-14 Pathogenicity Non-pathogenic NAS

MIGS-4 Geographic
location

Youngjong Island, Korea TAS [4]

MIGS-5 Sample
collection

November, 2005 TAS [4]

MIGS-4.1 Latitude 37.485o N TAS [4]

MIGS-4.2 Longitude 126.516o E TAS [4]

MIGS-4.3 Depth Not reported NAS

MIGS-4.4 Altitude Not reported NAS
aEvidence codes - IDA inferred from direct assay, TAS traceable author
statement (i.e., a direct report exists in the literature), NAS non-traceable
author statement (i.e., not directly observed for the living, isolated sample, but
based on a generally accepted property for the species, or anecdotal
evidence). These evidence codes are from the Gene Ontology project [44]

Fig. 2 Transmission electron microscopy image of Marinobacterium
rhizophilum CL-YJ9T

Table 2 Genome sequencing project information

MIGS ID Property Term

MIGS-31 Finishing quality Level 1: Standard Draft

MIGS-28 Libraries used Illumina Std shotgun library

MIGS-29 Sequencing platforms Illumina HiSeq 2000

MIGS-
31.2

Fold coverage 119.1X

MIGS-30 Assemblers Velvet v. 1.1.04, ALLPATHS v.
R37654

MIGS-32 Gene calling method Prodigal v2.5

Locus Tag F451

Genbank ID ARJM00000000

Genbank Date of
Release

12-Dec-2013

GOLD ID Gp0013985

BIOPROJECT PRJNA181367

MIGS-13 Source Material
Identifier

CL-YJ9

Project relevance GEBA-KMG, Tree of Life
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predicted CDSs, they were used to search the databases,
such as National Center for Biotechnology Information
non-redundant database, UniProt, TIGRFam, Pfam,
PRIAM, KEGG, COG, and InterPro databases. Additional
analysis and functional annotation were performed within
the Integrated Microbial Genomes [32].

Genome properties
The genome is 5,364,574 bp long and comprises 58 scaf-
folds ranging 1097 to 401,958 bp, with an overall G + C
content of 58.5% (Table 3). Of the 4853 genes predicted,
4762 were protein coding genes, and 91 were RNA
genes. A total of 3878 genes (79.9%) were assigned a pu-
tative function while the remaining ones were annotated
as hypothetical or unknown proteins. The distribution of
genes into COG functional categories is presented in
Table 4. The properties and the statistics of the genome
are summarized in Tables 3 and 4.

Insights from the genome sequence
To cope with osmotically varying conditions in tidal flat
(e.g., exposure to heavy rainfalls or desiccation during low
tides), M. rhizophilum CL-YJ9T seems to display diverse
mechanisms of adaption. For instance, the strain can
synthesize compatible solutes such as betaine, ectoine and
5-hydroxyectoine. The strain has two kind of genes (choline
dehydrogenases and betaine aldehyde dehydrogenase;
Table 5) participating in glycine-betaine biosynthesis from
choline, which is found in Gram-negative bacteria [33]. The
strain also has essential genes participating in the ectoine
biosynthesis and the 5-hydroxyectoine biosynthesis (five en-
zymes for the steps from aspartate to ectoine as well as

ectoine hydroxylase, respectively; Table 5) [34]. In addition,
the strain seems to uptake osmolytes by transport from the
external environment. In the genomic analysis, the glycine
betaine/L-proline ABC transporter system known as proU,
which is an operon that encodes a high-affinity ABC
transporter system consisting of three proteins (ProV,
ProW and ProX; F451DRAFT_00884, F451DRAFT_00885,
F451DRAFT_00886, respectively) is found in the strain.
Further, the homologue of the TRAP transporter
(F451DRAFT_00922) involved in transport of external
ectoine and hydroxyectoine is found in M. rhizophilum.
Function of the TRAP transporter is elucidated in both
Halomonas elongata DSM 2581 [35] and Silicibacter
pomeroyi DSS-3 [36]. Ectoine/5-hydroxyectoine-binding
periplasmic protein in M. rhizophilum showed amino acids
sequence similarity of 35.1% and 33.8% with those of H.
elongata (TeaA) and S. pomeroyi (UehA), respectively. The
transported ectoine is used as the sole carbon and nitrogen

Table 4 Number of genes associated with general COG
functional categories

Code Value %age Description

J 232 6.01 Translation, ribosomal structure and biogenesis

A 1 0.03 RNA processing and modification

K 289 7.48 Transcription

L 103 2.67 Replication, recombination and repair

B 2 0.05 Chromatin structure and dynamics

D 41 1.06 Cell cycle control, cell division, chromosome
partitioning

V 72 1.86 Defense mechanisms

T 182 4.71 Signal transduction mechanisms

M 213 5.52 Cell wall/membrane/envelope biogenesis

N 71 1.84 Cell motility

U 58 1.50 Intracellular trafficking, secretion, and vesicular
transport

O 162 4.19 Post-translational modification, protein turnover,
chaperones

C 296 7.66 Energy production and conversion

G 334 8.65 Carbohydrate transport and metabolism

E 407 10.54 Amino acid transport and metabolism

F 102 2.64 Nucleotide transport and metabolism

H 211 5.46 Coenzyme transport and metabolism

I 179 4.63 Lipid transport and metabolism

P 186 4.82 Inorganic ion transport and metabolism

Q 134 3.47 Secondary metabolites biosynthesis, transport and
catabolism

R 335 8.67 General function prediction only

S 209 5.41 Function unknown

– 1420 29.26 Not in COGs

The total is based on total number of protein coding genes in the
annotated genome

Table 3 Genome statistics

Attribute Number % of totala

Genome size (bp) 5,364,574 100

DNA coding (bp) 4,619,007 86.10

DNA G + C (bp) 3,136,815 58.47

DNA scaffolds 58 100

Total genes 4853 100

Protein coding genes 4762 98.12

RNA genes 91 1.88

Pseudo genes 0

Genes in internal clusters 642 13.23

Genes with functional prediction 3878 79.91

Genes assigned to COGs 3433 70.74

Genes with Pfam domains 4066 83.78

Genes with signal peptides 386 7.95

Genes with transmembrane helices 1137 23.43

CRISPR repeats 1
aThe total is based on either the size of the genome in base pairs or the total
number of protein coding genes in the annotated genome
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source in S. pomeroyi, but H. elongata can use it as a
compatible solute. Considering that ectoine can be de novo
produced in M. rhizophilum as well as actively transported
from the environment, the role of the TRAP transporter in
M. rhizophilum could be thought to recover endogenously
synthesized ectoine that has leaked through the membrane
as known in H. elongata [35].
In the rhizosphere of tidal flat, oxygen tension varies in

a wide range due to temperature change, repetitive
exposure to atmosphere and seawater during tidal cycle
and oxygen release from the roots of plants. Further, M.
rhizophilum has a molybdopterin biosynthesis pathway
(Table 5) and molybdoenzymes that use molydopterin as
cofactor or prosthetic group such as formate
dehydrogenase (F451DRAFT_01667, F451DRAFT_01668,
F451DRAFT_01669, F451DRAFT_01665) and arsenate
reductase (F451DRAFT_01068). ROS can be generated
during the molybdopterin metabolism. Thus, defense
mechanisms to ROS are required. Alteromonas sp. SN2,
isolated from marine tidal flat, increased the number of
oxidative stress tolerance genes to deal with ROS [37].
Similarly, many genes encoding ROS defense mechanisms
are present in M. rhizophilum, including catalase-
peroxidae (F451DRAFT_01727, F451DRAFT_04596),
superoxide dismutase (F451DRAFT_03202), alkyl
hydroperoxide reductase (F451DRAFT_02876,
F451DRAFT_01413, F451DRAFT_00847), glutathione
peroxidase (F451DRAFT_01603) and glutaredoxin
(F451DRAFT_00578, F451DRAFT_01573, F451DRAFT

_04005) as direct ROS scavengers. This line of data indi-
cates a lifestyle of M. rhizophilum closely associated with
the rhizosphere where substantial amounts of oxygen
might be released from the roots of a well-adapted tidal-
flat plant, Suaeda japonica. On the contrary, truncated
bacterial hemoglobins (F451DRAFT_00578, F451DRAFT
_01573, F451DRAFT_04005) involved in protection from
oxidative stress and enhanced respiration under hypoxic
conditions are present, indicatingM. rhizophilum is adapted
to the hypoxic rhizosphere in tidal-flat sediments, too.
The presence of motility by means of monopolar flagella

was reported in a previous report [4]. Consistently, a num-
ber of genes encoding flagellar basal body proteins, flagellar
hook-associated proteins and flagellar biosynthesis proteins
are found in the genomic analyses, suggesting that M.
rhizophilum could explore more favorable microenviron-
ments using flagella in the rhizosphere. In contrast to a re-
cent study that genes encoding steroid catabolism were
identified in Marinobacterium stanieri S30 [38], most of
these genes were not identified in the M. rhizophilum.

Conclusions
The genome of a representative of the genus Marinobac-
terium from the Proteobacteria phylum is reported here
for the first time. In addition to detailed information on
genome sequencing and annotation, genetic adaptation
in environmental conditions closely associated with
rhizosphere of a tidal flat plant such as salinity change
and oxygen stress could be understood on the basis of
genomic analyses.
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Table 5 Enzymes and gene-loci participating in selected pathways
identified in the draft genome of M. rhizophilum CL-YJ9T. Gene-loci
are from the IMG/MER database

Pathways Enzymes Gene-loci

Glycine betaine
biosynthesis

Choline dehydrogenase F451DRAFT_01661
F451DRAFT_03441
F451DRAFT_04658

Betaine aldehyde
dehydrogenase

F451DRAFT_00114

Ectoine and 5-
hydroxyectoine
biosynthesis

Aspartate kinase F451DRAFT_00077
F451DRAFT_02577

Aspartate semialdehyde
dehydrogenase

F451DRAFT_01139
F451DRAFT_01140

Diaminobutyrate
aminotransferase
apoenzyme

F451DRAFT_00080

Diaminobutyrate
acetyltransferase

F451DRAFT_00081

Ectoine synthase F451DRAFT_00079

Ectoine hydroxylase F451DRAFT_00078

Molybdopterin
biosynthesis

Cyclic pyranopterin
monophosphate synthase

F451DRAFT_03412
F451DRAFT_01249

Molybdopterin synthase F451DRAFT_04784
F451DRAFT_03411
F451DRAFT_01222
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