EXTENDED GENOME REPORT

Open Access

CrossMark

Complete genome sequence of *Thermotoga* sp. strain RQ7

Zhaohui Xu^{1*}, Rutika Puranik¹, Junxi Hu^{1,2}, Hui Xu¹ and Dongmei Han¹

Abstract

Thermotoga sp. strain RQ7 is a member of the family *Thermotogaceae* in the order *Thermotogales*. It is a Gram negative, hyperthermophilic, and strictly anaerobic bacterium. It grows on diverse simple and complex carbohydrates and can use protons as the final electron acceptor. Its complete genome is composed of a chromosome of 1,851,618 bp and a plasmid of 846 bp. The chromosome contains 1906 putative genes, including 1853 protein coding genes and 53 RNA genes. The genetic features pertaining to various lateral gene transfer mechanisms are analyzed. The genome carries a complete set of putative competence genes, 8 loci of CRISPRs, and a deletion of a well-conserved Type II R-M system.

Keywords: Thermotoga, T. sp. strain RQ7, Natural competence, CRISPR, Restriction-modification system, TneDI, CP007633

Background

Thermotoga species are a group of thermophilic or hyperthermophilic bacteria that can ferment a wide range of carbohydrates and produce hydrogen gas as one of the major final products [1, 2]. Their hydrogen yield from glucose can reach the theoretical maximum: 4 mol of H₂ from each mole of glucose [2, 3], which makes them ideal candidates for biofuel production. Meanwhile, because their enzymes are thermostable by nature, they also hold great prospect in the biocatalyst sector. 16S rRNA gene sequence analyses place Thermotoga at a deep branch in the tree of life, and genomic studies also reveal extensive horizontal gene transfer events between Thermotogales and other groups, particularly Archaea and Firmicutes [4]. Controversy over the phylogenetic significance of Thermotoga has triggered a prolonged debate on the concepts of species and biogeography, etc. [5].

We have been interested in the genetics of *Thermotoga* over the years and have developed the earliest set of tools to genetically modify these bacteria [6–8]. Strain RQ7 plays an essential role in these studies. This strain possesses the smallest known plasmid, pRQ7 (846 bp) [9], that is absent from most *Thermotoga* strains and serves as the base vector for all *Thermotoga-E. coli* shuttle vectors developed so far. *T.* sp. strain RQ7 is also

the first *Thermotoga* strain in which natural competence was discovered [7]. To gain insights into the genetic and genomic features of the strain and to facilitate the continuing effort on developing genetic tools for *Thermotoga*, we set out to sequence the whole genome of *T*. sp. strain RQ7.

Organism information

Classification and features

T. sp. strain RQ7 was isolated from marine sediments of Ribeira Quente, Azores [1]. The strain is a member of the genus *Thermotoga*, the family *Thermotogaceae*, and the order *Thermotogales* (Table 1). Based on 16S rRNA gene sequences, the closest relative of *T.* sp. strain RQ7 is *T. neapolitana* DSM 4359, and these two strains cluster with *T. maritima* MSB8 and *T.* sp. strain RQ2 (Fig. 1). The results are in agreement with previous reports [10].

Like its close relatives *T. neapolitana* DSM 4359 and *T. maritima* MSB8, *T.* sp. strain RQ7 is a strict anaerobe, growing best around 80 °C, utilizing both simple and complex sugars, and producing hydrogen gas. These bacteria grow in both rich and defined media, are free living and non-pathogenic to humans, animals, or plants. Cells are rod-shaped, about 0.5 to 2 μ m in length and 0.4 to 0.5 μ m in diameter (Fig. 2). The most distinctive feature of *Thermotoga* cells is the "toga" structure that

© The Author(s). 2017 **Open Access** This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

^{*} Correspondence: zxu@bgsu.edu

¹Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA

Full list of author information is available at the end of the article

MIGS ID	Property	Term	Evidence code ^a
	Classification	Domain <i>Bacteria</i>	TAS [37]
		Phylum <i>Thermotogae</i>	TAS [38, 39]
		Class Thermotogae	TAS [39, 40]
		Order Thermotogales	TAS [39, 41]
		Family Thermotogaceae	TAS [39, 42]
		Genus Thermotoga	TAS [1, 43, 44]
		Species T. neapolitana	IGC, TSA [45, 46]
		strain: RQ7	TAS [1]
	Gram stain	Negative	TAS [1]
	Cell shape	Rod	IDA, TAS [1]
	Motility	Motile	IDA, TAS [1]
	Sporulation	Not reported	
	Temperature range	55–90 °C	TAS [1]
	Optimum temperature	Around 80 °C	TAS [1]
	pH range; Optimum	5.5–9; 6.5	IDA, TAS [1]
	Carbon source	Mono- and polysaccharides	IDA, TAS [1, 47, 48]
MIGS-6	Habitat	Geothermally heated sediments	TAS [1]
MIGS-6.3	Salinity	0.25–3.75% NaCl (w/v)	IDA, TAS [1]
MIGS-22	Oxygen requirement	Anaerobic	IDA, TAS [1]
MIGS-15	Biotic relationship	Free-living	IDA, TAS [1]
MIGS-14	Pathogenicity	Non-pathogen	IDA, TAS [1]
MIGS-4	Geographic location	Azores, Sao Miguel, Ribeira Quente	TAS [1]
MIGS-5	Sample collection	1985	NAS
MIGS-4.1	Latitude	Not reported	
MIGS-4.2	Longitude	Not reported	
MIGS-4.4	Altitude	About sea level	NAS

Table 1 Classification and general features of Thermotoga sp. strain RQ7 according to the MIGS recommendations [36]

^aEvidence codes - *IDA* Inferred from Direct Assay, *TAS* Traceable Author Statement (i.e., a direct report exists in the literature), *NAS* Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence), *IGC* Inferred from Genomic Content (i.e., average nucleotide identity, syntenic regions). These evidence codes are from the Gene Ontology project [49]

Fig. 1 Phylogenetic tree showing the position of *1*. sp. strain RQ/ relative to other species within the order *Thermotogales*. Only species with complete genome sequences are included. The tree was built with 16S rRNA gene sequences, using the Neighbor-Joining method with MEGA7 [50]. *Fervidobacterium nodosum* serves as the outgroup

balloons out from both ends of the rod [1, 11], an extension of their outer membrane [12].

Genome sequencing information

Genome project history

The project started in June 2011, and the genome was sequenced by BGI Americas (Cambridge, MA) using the Illumina technology. A total of 400 Mb of clean data were generated, which covered the genome more than 200 fold. The assembled scaffold covers 97.7% of the chromosome. PCR and Sanger sequencing were later used for gap filling. The assembly was finalized in February 2014, and the complete sequence was submitted to the GenBank in April 2014. The sequence was annotated with the NCBI Prokaryotic Genome Annotation Pipeline [13] and the DOE-JGI Microbial Genome Annotation Pipeline (MGAP v.4) [14]. The project information is summarized in Table 2.

Growth conditions and genomic DNA preparation

T. sp. strain RQ7 was kindly provided by Drs. Harald Huber and Robert Huber at the University of Regensburg, Germany. It was cultivated in SVO medium [15] at 77 °C, and its genomic DNA was extracted with standard phenol extraction method [16]. Briefly, cells from 250 ml of overnight culture were collected by centrifugation and resuspended in 10 ml of STE solution (10 mM Tris-HCl, 1 mM EDTA, 100 mM NaCl, pH 8.0). SDS and proteinase K were added to a final concentration of 1% (*w*/*v*) and 20 µg/ml. The mixture was incubated at 50 °C for 6 h followed by the addition of an equal volume of phenol/chloroform/isoamyl alcohol (25:24:1, *v*/v/v). After gentle mixing, the mixture was centrifuged at 12,000 g at 4 °C for 15 min. The upper

Ta	ab	le	2	Proj	ect	inf	orr	nation	
----	----	----	---	------	-----	-----	-----	--------	--

MIGS ID	Property	Term
MIGS 31	Finishing quality	Complete
MIGS-28	Libraries used	Three Illumina paired-end libraries in sizes of 500, 2000, and 5000 bp
MIGS 29	Sequencing platforms	Illumina and Sanger
MIGS 31.2	Fold coverage	> 200×
MIGS 30	Assemblers	SOAPdenovo [17], SOAPaligner [18], CLC Workbench 5.1 [19], and GapFish [20]
MIGS 32	Gene calling method	GeneMarkS+ [51], Prodigal [52]
	Locus Tag	TRQ7 in GenBank; Ga0077854 in JGI-IMG
	GenBank ID	CP007633, KF798180
	GenBank Date of Release	February 4, 2015
	GOLD ID	Gp0117593
	BIOPROJECT	PRJNA246218
MIGS 13	Source Material Identifier	Personal culture collection (Dr. Harald Huber)
	Project relevance	Bioenergy, biotechnology, evolution

aqueous layer was transferred to a clean tube and mixed with 1/10 volume of 3 M sodium acetate (pH 5.5) and 2 volumes of ice cold 95% (v/v) ethanol. The DNA was spooled out by a glass rod, washed with 70% (v/v) ethanol, air dried, dissolved in 2 ml of TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0) containing 20 μ g/ml RNase A, and stored at -20 °C.

Genome sequencing and assembly

The genome of T. sp. strain RQ7 was mainly sequenced by BGI Americas using Illumina HiSeq 2000 sequencing platform. Three paired-end libraries, in size of 500, 2000, and 5000 kb, were constructed. The raw data were filtered by a quality control step and generated 400 Mb of clean data, which indicated a coverage of more than 200-fold. The reads were assembled by SOAPdenovo [17] and polished by SOAPaligner [18]. This resulted in a single scaffold of 1,822,593 bp that covered 97.7% of the genome and contained 28 gaps. The gap filling efforts included the integration of the current scaffold with contigs generated by the CLC Genomics Workbench [19] and a small amount of public sequences in GenBank. GapFish [20] was then used to solve a dozen ambiguous regions. Finally, PCR and primer walking were performed to close the remaining gaps, resulting a final assembly of 1,851,618 bp. The entire assembling process integrated wet lab methods with in silico approaches, and the programs used included public software

(SOAPdenovo and SOAPaligner [17, 18]), a commercial product (CLC Genomics Workbench [19]), and an in-house program GapFish [20]. Details of the assembling process are described in our previous report [20].

Genome annotation

The genome was independently annotated by two pipelines, the NCBI Prokaryotic Genome Annotation Pipeline [13] and the DOE-JGI Microbial Genome Annotation Pipeline (MGAP v.4) [14]. Both pipelines combine a gene-calling algorithm with a similarity-based gene detection approach, even though the algorithms and databases they use are different. For example, PGAAP uses GeneMarkS+ for de novo gene prediction, while MGAP uses Prodigal. Consequently, the two pipelines produced slightly different annotation results. The analyses in this report took into consideration of the results from both pipelines and are assisted with manual curation.

Genome properties

The genome of *T*. sp. strain RQ7 is composed of a circular chromosome of 1,851,618 bp with a GC content of 47.05% and a single mini-plasmid of 846 bp with a GC percentage of 39.95 (Fig. 3; Table 3). The plasmid pRQ7 has been characterized [9] and sequenced [6, 21] before. According to the annotation of MGAP, the chromosome carries 1906 putative genes, of which, 1853 are protein coding genes and 53 are RNA genes (Table 4). Among all the genes that are assigned to a COG category (Table 5), a significant portion (~12%, 191 genes) are devoted to carbohydrate utilization, which is typical to *Thermotoga* strains and accords with their versatile use of carbon and energy sources.

	Table 3	Summar	/ of geno	me: one	chromosome	and o	one plasi	mid
--	---------	--------	-----------	---------	------------	-------	-----------	-----

Label	Size (bp)	Topology	INSDC identifier	RefSeq ID
Chromosome	1,851,618	Circular	CP007633	NZ_CP007633
pRQ7	846	Circular	KF798180	NC_023152

Table 4 Genome statistics according to	the MGAP	pipeline
annotation (chromosome only)		

Attribute	Value	% of tota
Genome size (bp)	1,851,618	100.00
DNA coding (bp)	1,768,561	95.51
DNA G + C (bp)	871,250	47.05
DNA scaffolds	1	
Total genes	1906	100.00
Protein coding genes	1853	97.22
RNA genes	53	2.78
Pseudo genes	-	-
Genes in internal clusters	110	5.77
Genes with function prediction	1522	79.85
Genes assigned to COGs	1453	76.23
Genes with Pfam domains	1629	85.47
Genes with signal peptides	35	1.84
Genes with transmembrane helices	462	24.24
CRISPR repeats	8	

Insights from the genome sequence

The chromosomal sequence of *T.* sp. strain RQ7 was compared to those of *T. maritima* MSB8, *T. neapolitana* DSM 4359, and *T.* sp. strain RQ2, with emphases on the genetic elements that have the highest impacts on genetic engineering attempts, such as natural competence genes, CRISPRs, and R-M systems.

Full genome comparison

The alignment of the complete genomic sequence of the four *Thermotoga* strains (Fig. 4) revealed high levels of synteny among their genomes, particularly within the pairs of *T*. sp. strain RQ7–*T*. *neapolitana* DSM 4359 and *T*. sp. strain RQ2–*T*. *maritima* MSB8. This is in agreement with their placements in the phylogenetic tree (Fig. 1). The average nucleotide identity between *T*. sp. strain RQ7 and the type strain *T*. *neapolitana* DSM 4359 is 98.49%, which is higher than the conventional cutoff of 95% for species delineation [22]. Therefore, *T*. sp. strain RQ7 should be considered as a strain of *T*. *neapolitana*, same as *T*. sp. strain RQ2 to *T*. *maritima* [23].

Table 5 Number of genes associated with general COG functional categories

Code	Value	%age	Description
J	165	10.17	Translation, ribosomal structure and biogenesis
А	-	-	RNA processing and modification
К	75	4.62	Transcription
L	53	3.27	Replication, recombination and repair
В	1	0.06	Chromatin structure and dynamics
D	19	1.17	Cell cycle control, Cell division, chromosome partitioning
V	34	2.09	Defense mechanisms
Т	57	3.51	Signal transduction mechanisms
Μ	74	4.56	Cell wall/membrane biogenesis
Ν	55	3.39	Cell motility
U	21	1.29	Intracellular trafficking and secretion
0	66	4.07	Posttranslational modification, protein turnover, chaperones
С	104	6.41	Energy production and conversion
G	191	11.77	Carbohydrate transport and metabolism
E	169	10.41	Amino acid transport and metabolism
F	65	4	Nucleotide transport and metabolism
Н	73	4.5	Coenzyme transport and metabolism
I	42	2.59	Lipid transport and metabolism
Р	103	6.35	Inorganic ion transport and metabolism
Q	18	1.11	Secondary metabolites biosynthesis, transport and catabolism
R	156	9.61	General function prediction only
S	75	4.62	Function unknown
-	453	23.77	Not in COGs

The total is based on the total number of protein coding genes in the genome as annotated by MGAP v.4 [14]

A detailed comparison of T. sp. strain RQ7 and T. neapolitana DSM 4359 found 100 genes belonging only to the former and 120 genes only to the latter. Some of these genes became unique because their counterparts in the other genome have mutated to a pseudogene. However, many of the unique genes seem to have been acquired via recent lateral gene transfer events. The putative functions of these genes are mainly associated to transportation and utilization of carbohydrates and nucleotides. The most notable gene clusters include TRQ7_01555-01655 (nucleotide metabolism), TRQ7_02 675-02725 (carbohydrate metabolism), TRQ7_03440-03490 (arabinose metabolism), CTN_0026-0038 (synthesis of antibiotics), CTN_0236-0245 (carbohydrate metabolism), CTN_0355-0373 (ribose metabolism), CTN_1540-1554 (carbohydrate metabolism), and CTN_1602-1627 (ribose metabolism). Follow-up functional genomics studies are needed to validate the predictions on these gene functions and metabolic pathways.

Natural competence

Thermotoga species are known to undergo lateral gene transfer events. One of the ways this could happen is via natural transformation. Natural competence has been established in *T.* sp. strain RQ7 [7] and *T.* sp. strain RQ2 [8]. Using experimentally characterized competence genes as references, we are able to identify the genes

that might play a role in natural competence in *Thermotoga* (Table 6). These genes are widely spread among bacterial genomes, and none of them are clustered into operons. This might imply a primitive form of natural competence that is shared by most, if not all, bacteria. Perhaps, most free-living bacteria are more or less naturally competent during some points of their life. The trick is to identify the right conditions under which the natural competence will be allowed to develop.

CRISPRs

CRISPRs provide prokaryotes a form of adaptive immunity against invading phages and plasmids in a sequence specific manner [24, 25]. The system utilizes non-coding CRISPR RNA and a set of CRISPR-associated proteins to target invading nucleic acid, including both DNA and RNA. CRISPRs have been reported to prevent natural transformation [26, 27]. They have been noticed before in Thermotoga and are credited for large scale chromosomal recombination events in these species [28, 29]. NCBI's PGAAP pipeline identified 6 loci of CRISPR arrays in T. sp. strain RQ7, whereas JGI-IMG's MGAP pipeline and a manual analysis using CRISPRFinder [30] recognized a total of 8 loci (Table 7). Among these eight CRISPR loci, #1 and #3 are the ones not considered by PGAAP. Two clusters of *cas* genes are also found. The cas6-cas2 cassette is sandwiched between loci #3

Table 6 Manually curated competence genes

RQ7	Gene name ^a	Putative function	Tn	Tm	RQ2
DNA uptake and t	ranslocation				
TRQ7_00110	<i>pilZ</i> (Pa, Vc)	Type IV pilus biogenesis and twitching motility [54–56]	CTN_1670	TM0905	TRQ2_0022
TRQ7_00455	<i>pilB</i> (Pa, Vc)	Type II secretion system (T2SS), Type IV fimbrial assembly NTPase [57–59]	CTN_1739	TM0837	TRQ2_0090
TRQ7_01410 TRQ7_04530 TRQ7_08710	<i>pilQ</i> (Nm, Tt)	Secretin, forms gated channel for extrusion of assembled pilin [60–62]	CTN_1450 CTN_1933 CTN_0604	TM1117 TM0088	TRQ2_1699 TRQ2_0859
TRQ7_04500	<i>pilC</i> (Ps, Ng)	Type II secretory pathway, component PulF / Type IV fimbrial assembly protein [63, 64]	CTN_0598	TM_0094	TRQ2_0853
TRQ7_05855	<i>pilD</i> (Vv,Ng)	Type IV prepilin peptidase, processes N-terminal leader peptides for prepilins [65–67]	CTN_0883	TM1696	TRQ2_1138
TRQ7_06260	comEC (Bs)	Putative channel protein, Transports DNA across the cell membrane [68, 69]	CTN_0965	TM1775	TRQ2_1049
TRQ7_07315	comF (Hi)	Phosphoribosyltransferase [70, 71]	CTN_1168	TM1584	TRQ2_1247
TRQ7_07650	<i>pilT</i> (Ng)	Motility protein [72]	CTN_1229	TM1362	TRQ2_1467
TRQ7_07980	<i>pilE</i> (Ng, Pa)	Type IV pilin; major structural component of Type IV pilus [73, 74]	CTN_1301	TM1271	TRQ2_1548
TRQ7_09065	comEA (Bs)	High affinity DNA-binding periplasmic protein [75–78]	CTN_1515	TM1052	TRQ2_1756
Post-translocation					
TRQ7_02260	comM (Hi)	Promotes the recombination of the donor DNA into the chromosome [79]	CTN_0158	TM0513	TRQ2_0424
TRQ7_03645	<i>dprA</i> (Hi)	DNA protecting protein [80, 81]	CTN_0436	TM0250	TRQ2_0698

^aGene names are given after the experimentally characterized genes of the species in parentheses. Pa Pseudomonas aeruginosa, Vc Vibrio cholerae, Nm Neisseria meningitidis, Tt Thermus thermophilus, Ps Pseudomonas stutzeri, Ng Neisseria gonorrhoeae, Vv Vibrio vulnificus, Bs Bacillus subtilis, Hi influenza, RQ7 T. sp. strain RQ7, Tn T. neapolitana DSM 4359, Tm T. maritima MSB8, RQ2 T. sp. strain RQ2

and #4, and the *cas6-csm1* cassette is located 2285 bp upstream of locus #3 (Fig. 5, Table 7).

Although analysis with CRISPRFinder revealed the same number of CRISPR loci in the four close relatives, i.e. *T.* sp. strain RQ7, *T. neapolitana* DSM 4359, *T. maritima* MSB8, and *T.* sp. strain RQ2, the total number of

spacers they carry vary dramatically, as 95, 60, 106, and 129 spacers are found respectively. *T. maritima* MSB8 and *T.* sp. strain RQ2 also harbor RNA-targetting *cmr* genes in addition to DNA-targetting *cas* genes [31]. These differences may affect the efficiency of lateral gene transfer events among the strains.

Table 7 Summary of CRISPR loci in T. sp. strain RQ7

Locus	Repeats	Coordinates ^a	No. of spacers	Cas genes
1	GTTTCAATCCTTCCTTAGAGGTATGGAAACA GTTTCAATACTTCCTTAGAGGTATGGAAACA GTTTCAATACTTCCTTTGAGGTATGAAAACA	553,849-554,014	2	No
2	TTTCCTATACCTCTAAGAAAGGATTGAAAC GTTTCCATACCTCTAAGGAAGTATTGAAAC	594,500-594,927	6	No
3	GTTTCAATACTTCCTTTGAGGTATGGAAA GTTTCAATACTTCCTTAGAGGTATGGAAA GTTTCAATACATCCTCAGAGGTATGATTT	975,191-975,420	3	Yes
4	GTTTTTATCTTCCTAAGAGGAATATGAAC GTTTTTATCTTCCTAAGAGGAATATAGTA	983,596-986,955	51	Yes
5	GTTTCAATACTTCCTTTGAGGTATGGAAAC GTTTCAATATTTCCTTATAGGTACAAACCC	1,011,410-1,012,101	10	No
6	GTTTCAATACTTCCTTAGAGGTATGGAAAC	1,090,312-1,090,681	5	No
7	GTTTCCATACCTCTAAGGAAGTATTGAAAC	1,233,649-1,233,878	3	No
8	GTTTCAATACTTCCTTTGAGGTATGGAAAC	1,422,811-1,423,509	10	No

^aCoordinates as documented in JGI-IMG. The start coordinates in GenBank are 20 bp smaller because the chromosome is linearized at a site 20 bp downstream of what JGI-IMG uses

Type II R-M system TneDI

R-M systems are other defense mechanisms that prokaryotes have developed to protect the integrity of their genetic materials. The Type II R-M system TneDI has been characterized in *T. neapolitana* DSM 4359 and overexpressed in *Escherichia coli* [32, 33]. The nuclease R.TneDI cleaves at the center of the recognition site (CG \downarrow CG), and the methylase M.TneDI modifies one of the cytosines. The TneDI system has been found in many members of the *Thermotogaceae* family, including *T. maritima* MSB8 and *T.* sp. strain RQ2 [32]. However, it is absent from *T.* sp. strain RQ7, although the neighborhood is still highly conserved (Fig. 6). To exclude the possibility of an assembling error, primers spanning the region in question were designed, and the PCR results confirmed the deletion (Fig. 7). The absence of the TneDI system makes the DNA of T. sp. strain RQ7 susceptible to R.TneDI, and in vitro treatment with M.TneDI provides complete protection to its genomic DNA (Fig. 8).

M.TneDI has been predicted to be a m⁴C methylase based on sequence analysis [32]. It has also been noticed that m⁴C methylation is more common than m⁵C in thermophiles, probably due to a reduced risk of deamination [34]. The speculation of M.TneDI being a m⁴C methylase is further supported by the observation that the genomic DNA of TneDI-bearing species is still suspetible to BstUI (Fig. 9), which is an isoschizomer of R.TneDI and known to be blocked by m⁵C methylation [35].

MSB8; Tn, T. neapolitana DSM 4359

Conclusions

The genome of *T*. sp. strain RQ7 shares large regions of synteny with those of its close relatives, namely, *T. neapolitana* DSM 4359, *T. maritima* MSB8, and *T.* sp. strain RQ2. They all have a complete set of putative competence genes, although natural transformation has yet to be established in *T. neapolitana* DSM 4359 and *T. maritima* MSB8. The same number of CRISPR loci are found in all four genomes, even though the number of spacers vary. The most noticeable difference among the strains is the absence of the TneDI R-M system in *T.* sp. strain RQ7,

Fig. 9 Digestion of genomic DNA of *T. maritima* MSB8 (Tm), *T. neapolitana* DSM 4359 (Tn), *T.* sp. strain RQ2 (RQ2), and *T.* sp. strain RQ7 by BstUI. -, negative control, no BstUI; +, treated with BstUI

which partially explains why this strain is more amenable to genetic modifications than others. In general, this work sheds light on the genetic features of T. sp. strain RQ7, promoting genetic and genomic studies of *Thermotoga* spp.

Abbreviations

Cas: CRISPR associated; CRISPR: Clustered regularly interspaced short palindromic repeats; R-M: Restriction-modification

Acknowledgements

We are grateful to Drs. Harald Huber and Robert Huber at the University of Regensburg, Germany, for kindly providing T. sp. strain RQ7.

Funding

This work was supported by the BGSU Commercialization Catalyst Award and the BGSU Building Strength Award to ZX. BGSU plays no role in designing or conducting the study, collecting or analysing the data, or writing the manuscript.

Authors' contributions

ZX conceived and coordinated the study, participated in all aspects of data analysis and drafted the manuscript. RP participated in most parts of the work and helped in writing the manuscript. JX produced the SEM photo and the phylogenetic tree. HX contributed to the R-M study. DH initiated the sequencing project and the R-M study. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details

¹Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA. ²School of Life Sciences, Minnan Normal University, 36 Xianqianzhi Street, Zhangzhou, Fujian 363000, China.

Received: 4 October 2016 Accepted: 21 September 2017 Published online: 11 October 2017

References

- Huber R, Langworthy TA, Konig H, Thomm M, Woese CR, Sleytr UB, Stetter KO. Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90 degrees C. Arch Microbiol. 1986;144(4):324–33.
- Schroder C, Selig M, Schonheit P. Glucose Fermentation to Acetate, CO2 and H2 in the Anaerobic Hyperthermophilic Eubacterium Thermotoga Maritima: Involvement of the Embden-Meyerhof Pathway. Arch Microbiol. 1994;161(6):460–70.
- Takahata Y, Nishijima M, Hoaki T, petrophila MTT. sp. nov. and Thermotoga naphthophila sp. nov., two hyperthermophilic bacteria from the Kubiki oil reservoir in Niigata, Japan. Int J Syst Evol Microbiol. 2001;51:1901–9.
- Zhaxybayeva O, Swithers KS, Lapierre P, Fournier GP, Bickhart DM, DeBoy RT, Nelson KE, Nesbo CL, Doolittle WF, Gogarten JP, et al. On the chimeric nature, thermophilic origin, and phylogenetic placement of the Thermotogales. Proc Natl Acad Sci U S A. 2009;106(14):5865–70.
- Nesbo CL, Dlutek M, Doolittle WF. Recombination in thermotoga: Implications for species concepts and biogeography. Genetics. 2006;172(2):759–69.
- 6. Han D, Norris SM, Xu Z. Construction and transformation of a Thermotoga-E. coli shuttle vector. BMC Biotechnol. 2012;12:2.
- Han D, Xu H, Puranik R, Xu Z. Natural transformation of Thermotoga sp. strain RQ7. BMC Biotechnol. 2014;14:39.
- Xu H, Han D, Xu Z. Expression of Heterologous Cellulases in Thermotoga sp. Strain RQ2. Biomed Res Int. 2015;2015:304523.
- Harriott OT, Huber R, Stetter KO, Betts PW, Noll KM. A Cryptic Miniplasmid from the Hyperthermophilic Bacterium Thermotoga Sp Strain Rq7. J Bacteriol. 1994;176(9):2759–62.
- 10. Frock AD, Notey JS, Kelly RM. The genus Thermotoga: recent developments. Environ Technol. 2010;31(10):1169–81.
- 11. Windberger E, Huber R, Trincone A, Fricke H, Stetter KO. Thermotoga thermarum sp. nov. and Thermotoga neapolitana occurring in African continental solfataric springs. Arch Microbiol. 1989;151(6):506–12.
- Rachel R, Engel AM, Huber R, Stetter KO, Baumeister W. A Porin-Type Protein Is the Main Constituent of the Cell-Envelope of the Ancestral Eubacterium Thermotoga-Maritima. FEBS Lett. 1990;262(1):64–8.
- Angiuoli SV, Gussman A, Klimke W, Cochrane G, Field D, Garrity G, Kodira CD, Kyrpides N, Madupu R, Markowitz V, et al. Toward an online repository of Standard Operating Procedures (SOPs) for (meta)genomic annotation. OMICS. 2008;12(2):137–41.
- Huntemann M, Ivanova NN, Mavromatis K, Tripp HJ, Paez-Espino D, Palaniappan K, Szeto E, Pillay M, Chen IM, Pati A, et al. The standard operating procedure of the DOE-JGI Microbial Genome Annotation Pipeline (MGAP v.4). Stand Genomic Sci. 2015;10:86.
- Van Ooteghem SA, Beer SK, Yue PC. Hydrogen production by the thermophilic bacterium Thermotoga neapolitana. Appl Biochem Biotechnol. 2002;98:177–89.
- Sambrook J, Russell DW. The Condensed Protocols from Molecular Cloning: A Laboratory Manual. New York: Cold Spring Harbor Laboratory Press; 2006.
- Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 2010;20(2):265–72.
- 18. SOAPaligner [http://soap.genomics.org.cn/soapaligner.html].
- CLC Genomics Workbench [https://www.qiagenbioinformatics.com/ products/clc-genomics-workbench/].
- Puranik R, Quan G, Werner J, Zhou R, Xu Z. A pipeline for completing bacterial genomes using in silico and wet lab approaches. BMC Genomics. 2015;16(Suppl 3):S7.
- 21. Yu JS, Noll KM. Plasmid pRQ7 from the hyperthermophilic bacterium Thermotoga species strain RQ7 replicates by the rolling-circle mechanism. J Bacteriol. 1997;179(22):7161–4.
- Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol. 2007;57(Pt 1):81–91.
- Swithers KS, DiPippo JL, Bruce DC, Detter C, Tapia R, Han S, Saunders E, Goodwin LA, Han J, Woyke T, et al. Genome sequence of Thermotoga sp. strain RQ2, a hyperthermophilic bacterium isolated from a geothermally heated region of the seafloor near Ribeira Quente, the Azores. J Bacteriol. 2011;193(20):5869–70.

- 24. Sorek R, Kunin V, Hugenholtz P. CRISPR–a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat Rev Microbiol. 2008;6(3):181–6.
- Garneau JE, Dupuis ME, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadan AH, Moineau S. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature. 2010;468(7320):67–71.
- 26. Jorth P, Whiteley M. An evolutionary link between natural transformation and CRISPRadaptive immunity. MBio. 2012;3(5):e00309-12.
- Bikard D, Hatoum-Aslan A, Mucida D, Marraffini LA. CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection. Cell Host Microbe. 2012;12(2):177–86.
- Mongodin EF, Hance IR, DeBoy RT, Gill SR, Daugherty S, Huber R, Fraser CM, Stetter K, Nelson KE. Gene transfer and genome plasticity in Thermotoga maritima, a model hyperthermophilic species. J Bacteriol. 2005;187(14):4935–44.
- DeBoy RT, Mongodin EF, Emerson JB, Nelson KE. Chromosome evolution in the Thermotogales: Large-scale inversions and strain diversification of CRISPR sequences. J Bacteriol. 2006;188(7):2364–74.
- Grissa I, Vergnaud G, Pourcel C. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res. 2007;35(Web Server issue):W52–7.
- Haft DH, Selengut J, Mongodin EF, Nelson KE. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol. 2005;1(6):e60.
- Xu Z, Han D, Cao J, Saini U. Cloning and characterization of the TneDI restriction: modification system of Thermotoga neapolitana. Extremophiles. 2011;15(6):665–72.
- Xu H, Han D, Xu Z. Overexpression of a lethal methylase, M.TneDl, in E. coli BL21(DE3). Biotechnol Lett. 2014;36(9):1853–9.
- Ehrlich M, Gama-Sosa MA, Carreira LH, Ljungdahl LG, Kuo KC, Gehrke CW. DNA methylation in thermophilic bacteria: N4-methylcytosine, 5-methylcytosine, and N6-methyladenine. Nucleic Acids Res. 1985;13(4):1399–412.
- Jin SG, Kadam S, Pfeifer GP. Examination of the specificity of DNA methylation profiling techniques towards 5-methylcytosine and 5-hydroxymethylcytosine. Nucleic Acids Res. 2010;38(11):e125.
- Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T, Thomson N, Allen MJ, Angiuoli SV, et al. The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol. 2008;26(5):541–7.
- Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A. 1990;87(12):4576–9.
- Reysenbach A-L, BII P. Thermotogae phy.nov. In: Garrity GM, Boone DR, Castenholz RW, editors. Bergey's manual of systematic bacteriology, vol. 1. 2nd ed. New York: Springer; 2001. p. 369–87.
- List Editor. Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB. List No. 85. Int J Syst Bacteriol. 2002;52(3):685–90.
- Reysenbach A-L, Class I. Thermotogae class. nov. In: Garrity GM, Boone DR, Castenholz RW, editors. Bergey's manual of systematic bacteriology, vol. 1. 2nd ed. New York: Springer; 2001. p. 369–87.
- Reysenbach A-L, Order I. Thermotogales ord. nov. Huber and Stetter 1992c, 3809. In: Garrity GM, Boone DR, Castenholz RW, editors. Bergey's manual of systematic bacteriology, vol. 1. 2nd ed. New York: Springer; 2001. p. 369–87.
- Reysenbach A-L, Family I. Thermotogaceae fam. nov. In: Garrity GM, Boone DR, Castenholz RW, editors. Bergey's manual of systematic bacteriology, vol. 1. 2nd ed. New York: Springer; 2001. p. 370–87.
- 43. Bhandari V, Gupta RS. Molecular signatures for the phylum (class) Thermotogae and a proposal for its division into three orders (Thermotogales, Kosmotogales ord. nov. and Petrotogales ord. nov.) containing four families (Thermotogaceae, Fervidobacteriaceae fam. nov., Kosmotogaceae fam. nov. and Petrotogaceae fam. nov.) and a new genus Pseudothermotoga gen. nov. with five new combinations. Antonie Van Leeuwenhoek. 2014;105(1):143–68.
- List Editor. Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB. List No. 22. Int J Syst Bacteriol. 1986;36(4):573–6.
- Jannasch HW, Huber R, Belkin S, Stetter, KO. Thermotoga neapolitana sp. nov. of the extremely thermophilic, eubacterial genus Thermotoga. Arch Microbiol. 1988;150(1):103-4
- List Editor. Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB. List No. 28. Int J Syst Bacteriol. 1989;39(1):93–4.

- Chhabra SR, Shockley KR, Conners SB, Scott KL, Wolfinger RD, Kelly RM. Carbohydrate-induced differential gene expression patterns in the hyperthermophilic bacterium Thermotoga maritima. J Biol Chem. 2003;278(9):7540–52.
- Yu X, Drapcho CM. Hydrogen production by the hyperthermophilic bacterium Thermotoga neapolitana using agricultural-based carbon and nitrogen sources. Biol Eng Trans. 2011;4(2):101–12.
- Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25(1):25–9.
- Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol. 2016;33(7):1870–4.
- Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 2001;29(12):2607–18.
- Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119.
- Darling AC, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004;14(7):1394–403.
- Alm RA, Bodero AJ, Free PD, Mattick JS. Identification of a novel gene, pilZ, essential for type 4 fimbrial biogenesis in Pseudomonas aeruginosa. J Bacteriol. 1996;178(1):46–53.
- van Schaik EJ, Giltner CL, Audette GF, Keizer DW, Bautista DL, Slupsky CM, Sykes BD, Irvin RT. DNA binding: a novel function of Pseudomonas aeruginosa type IV pili. J Bacteriol. 2005;187(4):1455–64.
- Pratt JT, Tamayo R, Tischler AD, Camilli A. PilZ domain proteins bind cyclic diguanylate and regulate diverse processes in Vibrio cholerae. J Biol Chem. 2007;282(17):12860–70.
- Chiang P, Sampaleanu LM, Ayers M, Pahuta M, Howell PL, Burrows LL. Functional role of conserved residues in the characteristic secretion NTPase motifs of the Pseudomonas aeruginosa type IV pilus motor proteins PilB, PilT and PilU. Microbiology. 2008;154(Pt 1):114–26.
- Nunn D, Bergman S, Lory S. Products of three accessory genes, pilB, pilC, and pilD, are required for biogenesis of Pseudomonas aeruginosa pili. J Bacteriol. 1990;172(6):2911–9.
- Seitz P, Blokesch M. DNA-uptake machinery of naturally competent Vibrio cholerae. Proc Natl Acad Sci U S A. 2013;110(44):17987–92.
- Assalkhou R, Balasingham S, Collins RF, Frye SA, Davidsen T, Benam AV, Bjoras M, Derrick JP, Tonjum T. The outer membrane secretin PilQ from Neisseria meningitidis binds DNA. Microbiology. 2007;153(Pt 5):1593–603.
- Burkhardt J, Vonck J, Averhoff B. Structure and function of PilQ, a secretin of the DNA transporter from the thermophilic bacterium Thermus thermophilus HB27. J Biol Chem. 2011;286(12):9977–84.
- Collins RF, Davidsen L, Derrick JP, Ford RC, Tonjum T. Analysis of the PilQ secretin from Neisseria meningitidis by transmission electron microscopy reveals a dodecameric quaternary structure. J Bacteriol. 2001;183(13):3825–32.
- 63. Graupner S, Frey V, Hashemi R, Lorenz MG, Brandes G, Wackernagel W. Type IV pilus genes pilA and pilC of Pseudomonas stutzeri are required for natural genetic transformation, and pilA can be replaced by corresponding genes from nontransformable species. J Bacteriol. 2000;182(8):2184–90.
- Rudel T, Facius D, Barten R, Scheuerpflug I, Nonnenmacher E, Meyer TF. Role of pili and the phase-variable PilC protein in natural competence for transformation of Neisseria gonorrhoeae. Proc Natl Acad Sci U S A. 1995;92(17):7986–90.
- Nunn DN, Lory S. Product of the Pseudomonas aeruginosa gene pilD is a prepilin leader peptidase. Proc Natl Acad Sci U S A. 1991;88(8):3281–5.
- Freitag NE, Seifert HS, Koomey M. Characterization of the pilF-pilD pilusassembly locus of Neisseria gonorrhoeae. Mol Microbiol. 1995;16(3):575–86.
- Paranjpye RN, Lara JC, Pepe JC, Pepe CM, Strom MS. The type IV leader peptidase/N-methyltransferase of Vibrio vulnificus controls factors required for adherence to HEp-2 cells and virulence in iron-overloaded mice. Infect Immun. 1998;66(12):5659–68.
- Hahn J, Inamine G, Kozlov Y, Dubnau D. Characterization of comE, a late competence operon of Bacillus subtilis required for the binding and uptake of transforming DNA. Mol Microbiol. 1993;10(1):99–111.
- Draskovic I, Dubnau D. Biogenesis of a putative channel protein, ComEC, required for DNA uptake: membrane topology, oligomerization and formation of disulphide bonds. Mol Microbiol. 2005;55(3):881–96.

- Bakaletz LO, Baker BD, Jurcisek JA, Harrison A, Novotny LA, Bookwalter JE, Mungur R, Munson RS Jr. Demonstration of Type IV pilus expression and a twitching phenotype by Haemophilus influenzae. Infect Immun. 2005;73(3):1635–43.
- Larson TG, Goodgal SH. Sequence and transcriptional regulation of com101A, a locus required for genetic transformation in Haemophilus influenzae. J Bacteriol. 1991;173(15):4683–91.
- Wolfgang M, Lauer P, Park HS, Brossay L, Hebert J, Koomey M. PilT mutations lead to simultaneous defects in competence for natural transformation and twitching motility in piliated Neisseria gonorrhoeae. Mol Microbiol. 1998;29(1):321–30.
- Kline KA, Criss AK, Wallace A, Seifert HS. Transposon mutagenesis identifies sites upstream of the Neisseria gonorrhoeae pilE gene that modulate pilin antigenic variation. J Bacteriol. 2007;189(9):3462–70.
- Russell MA, Darzins A. The pilE gene product of Pseudomonas aeruginosa, required for pilus biogenesis, shares amino acid sequence identity with the N-termini of type 4 prepilin proteins. Mol Microbiol. 1994;13(6):973–85.
- Provvedi R, Dubnau D. ComEA is a DNA receptor for transformation of competent Bacillus subtilis. Mol Microbiol. 1999;31(1):271–80.
- Inamine GS, Dubnau D. ComEA, a Bacillus subtilis integral membrane protein required for genetic transformation, is needed for both DNA binding and transport. J Bacteriol. 1995;177(11):3045–51.
- 77. Chen I, Gotschlich EC. ComE, a competence protein from Neisseria gonorrhoeae with DNA-binding activity. J Bacteriol. 2001;183(10):3160–8.
- Takeno M, Taguchi H, Akamatsu T. Role of ComEA in DNA uptake during transformation of competent Bacillus subtilis. J Biosci Bioeng. 2012;113(6):689–93.
- Gwinn ML, Ramanathan R, Smith HO, Tomb JF. A new transformation-deficient mutant of Haemophilus influenzae Rd with normal DNA uptake. J Bacteriol. 1998;180(3):746–8.
- Mortier-Barriere I, Velten M, Dupaigne P, Mirouze N, Pietrement O, McGovern S, Fichant G, Martin B, Noirot P, Le Cam E, et al. A key presynaptic role in transformation for a widespread bacterial protein: DprA conveys incoming ssDNA to RecA. Cell. 2007;130(5):824–36.
- Karudapuram S, Zhao X, Barcak GJ. DNA sequence and characterization of Haemophilus influenzae dprA+, a gene required for chromosomal but not plasmid DNA transformation. J Bacteriol. 1995;177(11):3235–40.
- 82. Clone Manager [http://www.scied.com/index.htm].

Submit your next manuscript to BioMed Central and we will help you at every step:

- We accept pre-submission inquiries
- Our selector tool helps you to find the most relevant journal
- We provide round the clock customer support
- Convenient online submission
- Thorough peer review
- Inclusion in PubMed and all major indexing services
- Maximum visibility for your research

Submit your manuscript at www.biomedcentral.com/submit

