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Abstract

A sulfur-oxidizing chemolithoautotrophic bacterium, Sulfurovum lithotrophicum 42BKTT, isolated from hydrothermal
sediments in Okinawa, Japan, has been used industrially for CO2 bio-mitigation owing to its ability to convert CO2

into C5H8NO4
− at a high rate of specific mitigation (0.42 g CO2/cell/h). The genome of S. lithotrophicum 42BKTT

comprised of a single chromosome of 2217,891 bp with 2217 genes, including 2146 protein-coding genes and 54
RNA genes. Here, we present its complete genome-sequence information, including information about the genes
encoding enzymes involved in CO2 fixation and sulfur oxidation.
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Introduction
Epsilonproteobacteria are well-known chemolithoauto-
trophic bacteria found in deep-sea hydrothermal fields
that play significant roles in sulfur, nitrogen, and
hydrogen flux [1, 2].
Sulfurovum lithotrophicum 42BKTT is a sulfur-oxidizing

member of Epsilonproteobacteria that was isolated from
deep-sea hydrothermal sediments in Okinawa, Japan [3].
Strain 42BKTT is a Gram-negative, non-motile, and
coccoid-to-short-rod-shaped bacterium that utilizes CO2

as a carbon source, S or S2O3
2− as electron donors, and O2

and NO3
− as electron acceptors [3, 4]. Recent studies have

focused on its potential industrial applications for CO2

bio-mitigation, reporting that this strain could convert
CO2 into C5H8NO4

− at a high specific mitigation rate of
~0.42 g CO2/cell/h [4].
The CO2-bio-mitigation ability of S. lithotrophicum can

be improved and optimized through genetic engineering;
however, the present lack of genetic knowledge of S.

lithotrophicum renders the genetic engineering of this
strain difficult. Here, we presented a preliminary descrip-
tion and the general features of S. lithotrophicum 42BKTT,
along with its genome-sequence annotations and interac-
tions with other Sulfurovum species. This information
would be helpful for improving the use of chemolithoau-
totrophic bacteria, including Sulfurovum species, in indus-
trial applications in CO2 bio-mitigation.

Organism information
Classification and features
A representative 16S rRNA gene of S. lithotrophicum
42BKTT was compared with that of other species using
NCBI BLAST [5]. Figure 1 shows the phylogenetic tree
with S. lithotrophicum 42BKTT, constructed based on the
16S rRNA sequence. This strain shared 99.1% (1393/
1406 bp) and 95.1% (1312/1379) sequence identity with the
16S rRNA genes of Sulfurovum sp. NBC37–1 [6] and Sul-
furovum aggregans Monchim33T, respectively.
S. lithotrophicum 42BKTT is a Gram-negative, non-

motile, coccoid-to-short-rod-shaped bacterium that is
0.5–1.2 μm in length and 0.4–0.8 μm in width (Fig. 2).
The 42BKTT strain is a mesophilic, facultative anaer-
obe that requires sea salt to grow and can use NH4Cl
as a nitrogen source. Normal growth occurs at a
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temperature of 10–40 °C, pH of 5.0–9.0, and salinity
of 5–60 g/l [3]. The basic details of its genome se-
quence are shown in Table 1.

Chemotaxonomic data
The major cellular fatty acids that were present in strain
42BKTT included C16: 1 (53.7%), C16: 0 (31.3%), and C18: 0

(15.0%) [3]. It did not contain C14:0, C14:1, or C18:1, whereas
S. aggregans Monchim33T contains 7.7, 5.9, and 9.4%, re-
spectively, of these fatty acids [3, 7], and Sulfurimonas auto-
trophica OK 10T, another chemolithoautotrophic bacteria,
contains 8.4% of C14:0 and 9.4% of C18:1 [8]. S. lithotrophi-
cum 42BKTT can fix CO2 via the reductive tricarboxylic
acid (TCA) cycle, although the gene encoding phospho-
enolpyruvate (PEP) carboxylase is not annotated in its gen-
ome. Sulfur or S2O3

2− are oxidized by bacteria of the genus

Sulfurovum; S. lithotrophicum 42BKTT can oxidize S2− only
using a sulfide-quinone reductase, whereas Sulfurovum sp.
NBC37–1 oxidizes S2− using a sulfide-quinone reductase or
a sulfide dehydrogenase.

Genome sequencing information
Genome project history
S. lithotrophicum 42BKTT was selected for sequencing
based on its ability to convert CO2 into C5H8NO4

−,
which can be industrially used for CO2 bio-mitigation.
The draft sequencing and annotation were performed by
ChunLab, Inc. (Seoul, Korea). The genome project was
deposited in the Genomes OnLine Database [9] under
the accession number Gp0118364. The complete gen-
ome sequence was also deposited in GenBank [10] under
the accession number CP011308. Table 2 contains the
details of the project and its association with MIGS ver-
sion 2.0 compliance [11].

Growth conditions and genomic DNA preparation
S. lithotrophicum 42BKTT was grown in a 125-mL
serum bottle (Wheaton Industries, Millville, NJ, USA)
with 20 mL of MJ basal medium and filled with a CO2/
N2 gas mixture. The bottle was incubated at 29 °C while
shaking at 120 rpm (Green Shaker, Vision Scientific Co.,
Daejeon, Korea) [4]. Genomic DNA was isolated using a
QIAmp DNA mini kit (Qiagen, Hilden, Germany), ac-
cording to the manufacturer’s instructions.

Genome sequencing and assembly
The genomic library was sequenced using an Illumina
MiSeq PE 300 and PacBio 10 K with the Illumina 300-bp
paired-end library (Illumina, San Diego, CA, USA) and the
PacBio 20 K library (Pacific Biosciences, Menlo Park, CA,
USA), respectively. The generated paired-end sequencing

Fig. 1 Phylogenetic tree showing the relative position of Sulfurovum lithotrophicum 42BKTT, based 16S rRNA gene sequence. All sites were
informative and free of gaps. Evolutionary history was inferred using the neighbor-joining method [35]. The tree was built using the maximum
composite-likelihood method [36]. The percentage of replicate trees with the associated taxa clustered together in the bootstrap test (1000
replicates) is shown next to the corresponding branches [37]. Evolutionary analyses were conducted in MEGA6 [38]. Corresponding GenBank
accession numbers are shown in brackets next to the strain name

Fig. 2 Scanning electron micrograph of Sulfurovum
lithotrophicum 42BKTT
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reads (total read length: 2217,891 bp) were assembled using
the CLC Genomics Workbench version 7.5.1 (CLC Bio,
Aarhus, Denmark) and PacBio SMRT Analysis version 2.3
(Pacific Biosciences), resulting in one contig with an aver-
age genome coverage of 852.21 × .

Genome annotation
The genome was annotated using the NCBI Prokaryotic
Genome Annotation Pipeline [12], which was designed

to annotate bacterial genomes. Genome annotation was
performed by predicting protein-coding, rRNA, tRNA,
ncRNA, and pseudo genes. Phobius [13] was used to
predict signal-peptide genes, and TMHMM Server ver-
sion 2.0 [14] was used to predict transmembrane helix
genes [15, 16]. Protein families [17] were investigated
using Pfam 29.0 [18], and GeneMarkS+ [19], which uses
alignment data for gene prediction, was used as an an-
notation tool [20].

Genome properties
The genome of S. lithotrophicum 42BKTT comprised a
single circular chromosome of 2217,891 bp with a GC
content of 44.26%. Among the 2217 genes predicted,
2146 (96.80%) were protein-coding DNA sequences, 17
of which were pseudogenes. Among the CDSs, 89.66%
were grouped into cluster of orthologous group func-
tional categories. The genome contained a CRISPR array
and 54 RNA genes, including 44 tRNAs, 9 rRNAs, and
one ncRNA. The properties and statistics of the genome
are summarized in Fig. 3 and Tables 3 and 4, 5.

Insights from the genome sequence
S. lithotrophicum 42BKTT is a sulfur-oxidizing bacterium
that can fix CO2 through the reductive TCA cycle. Here,
we focused on investigating its abilities for CO2 fixation
and sulfur oxidation (sox), based on its genome sequence.
So far, six pathways have been associated with CO2

fixation: the Calvin-Benson-Bassham or reductive
pentose pathway, the reductive TCA cycle or reverse
citric acid cycle, the reductive acetyl CoA or Wood-
Ljungdahl pathway, the 3-hydroxypropionate pathway

Table 2 Project information

MIGS ID Property Term

MIGS 31 Finishing quality Completely finished

MIGS 28 Libraries used Illumina 300-bp paired-end
library,
PacBio 20 K library

MIGS 29 Sequencing platforms Miseq PE 300, PacBio 10 K

MIGS 31.2 Fold coverage 852.21×

MIGS 30 Assemblers CLC Genomics Workbench v.7.5.1,
SMRT Analysis v.2.3

MIGS 32 Gene-calling method Prodigal 2.6.2

Locus Tag YH65

Genbank ID CP011308.1

Genbank Date of
Release

08/20/2015

GOLD ID Gp0118364

BIOPROJECT PRJNA279430

MIGS 13 Source-material identifier 42BKTT/ ATCC BAA-797T

Project relevance CO2 fixation

Table 1 Classification and general features of Sulfurovum
lithotrophicum strain 42BKTT [11]

MIGS ID Property Term Evidence
codea

Classification Domain Bacteria TAS [29]

Phylum Proteobacteria TAS [30]

Class Epsilonproteobacteria TAS [31]

Order Campylobacterales TAS [32]

Family Helicobacteraceae TAS [33]

Genus Sulfurovum TAS [3]

Species Sulfurovum
lithotrophicum

TAS [3]

Type strain: 42BKTT

(CP011308)
TAS [3]

Gram stain Negative TAS [3]

Cell shape Coccoid to short rods TAS [3]

Motility None-motile TAS [3]

Sporulation Not reported NAS

Temperature
range

10–40 °C TAS [3]

Optimum
temperature

28–30 °C TAS [3]

pH range;
Optimum

6.5–7.0 TAS [3]

Carbon source Sodium bicarbonate TAS [4]

MIGS-6 Habitat Deep-sea hydrothermal
vent

TAS [3]

MIGS-6.3 Salinity 0.5–6% NaCl (w/v) TAS [3]

MIGS-22 Oxygen
requirement

Facultatively anaerobic TAS [3]

MIGS-15 Biotic relationship Symbiont TAS [3]

MIGS-14 Pathogenicity Not reported NAS

MIGS-4 Geographic
location

Okinawa, Japan TAS [3]

MIGS-5 Sample collection April 2002 TAS [3]

MIGS-4.1 Latitude 27° 47·38′ N TAS [3]

MIGS-4.2 Longitude 126° 53·87′ E TAS [3]

MIGS-4.4 Altitude −1033 m TAS [3]
aEvidence codes - TAS Traceable Author Statement (i.e., a direct report exists in
the literature); NAS Non-traceable Author Statement (i.e., not directly observed
for the living, isolated sample, but based on a generally accepted property for
the species or anecdotal evidence). These evidence codes are from the Gene
Ontology project [34]
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or malyl CoA pathway, the 3-hydroxypropionate/4-
hydroxy-butyrate cycle, and the dicarboxylate/4-
hydroxybutyrate cycle [21, 22]. Similar to the
majority of Epsilonproteobacteria, S. lithotrophicum
42BKTT can also grow chemoautotrophically through
its adenosine triphosphate citrate lyase, 2-
oxoglutarate:ferredoxin oxidoreductase, and pyruva-
te:ferredoxin oxidoreductase via the reductive TCA
cycle [23–25]. We annotated these three key en-
zymes, as well as other relevant enzymes such as
malate dehydrogenase, fumarate hydratase, fumarate
reductase, isocitrate dehydrogenase, aconitate hydra-
tase, PEP synthase, and PEP carboxylase, in the gen-
ome sequence of 42BKTT. Notably, Sulfurovum sp.
NBC37–1 and Candidatus Sulfurovum sediminum
AR could also assimilate CO2 via the reductive TCA
cycle [6, 26].
S. lithotrophicum 42BKTT is known to oxidize or S2S

O3
2− via a sox system using SoxB, SoxXA, SoxYZ, and

Sox(CD)2 periplasmic proteins [27]. These enzymes
catalyze the oxidation of S or S2O3

2− using horse cyto-
chrome c as the final electron acceptor [28]. Here, we
confirmed the presence of SoxA, SoxB, SoxZ, SoxY, and
SoxX genes in the 42BKTT genome.

Fig. 3 Genome map of Sulfurovum lithotrophicum 42BKTT. From the outer to the inner circle: RNA regions (rRNA, red; tRNA, lavender), CDS on the
reverse strand (colored based on COG categories), CDS on the forward strand (colored based on COG categories), G + C skew (blue/goldenrod),
and GC ratio (green/red)

Table 3 Genome statistics

Attribute Value % of total

Genome size (bp) 2217,891 100.00

DNA coding (bp) 2,028,222 91.44

DNA G + C (bp) 981,638 44.26

DNA scaffolds 1

Total genes 2217 100.00

Protein-coding genes 2146 96.80

RNA genes 54 2.44

Pseudo genes 17 0.77

Genes in internal clusters NA NA

Genes with function prediction 1559 70.32

Genes assigned to COGs 1979 89.26

Genes with Pfam domains 1770 79.84

Genes with signal peptides 412 18.58

Genes with transmembrane helices 513 23.14

CRISPR repeats 1
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Conclusions
To the best of our knowledge, this is the first report de-
scribing the genome sequence of S. lithotrophicum
42BKTT, which comprised a circular chromosome of
2217,891 bp (44.26% GC content) with 2217 genes,
among which 2146 were CDSs, 17 were pseudogenes,
and 54 were RNA genes. S. lithotrophicum 42BKTT as-
similates CO2 via the reductive TCA cycle and oxidizes
S or S2O3

2− via the sox system. The details of the genome
sequence of this strain could provide potential strategies
to enhance the industrial application of such bacteria for
CO2 bio-mitigation.
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