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Abstract

Arthrobacter alpinus R3.8 is a psychrotolerant bacterial strain isolated from a soil sample obtained at Rothera Point,
Adelaide Island, close to the Antarctic Peninsula. Strain R3.8 was sequenced in order to help discover potential cold
active enzymes with biotechnological applications. Genome analysis identified various cold adaptation genes
including some coding for anti-freeze proteins and cold-shock proteins, genes involved in bioremediation of
xenobiotic compounds including naphthalene, and genes with chitinolytic and N-acetylglucosamine utilization
properties and also plant-growth-influencing properties. In this genome report, we present a complete genome
sequence of A. alpinus strain R3.8 and its annotation data, which will facilitate exploitation of potential novel
cold-active enzymes.
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Introduction
The production of cold-adapted enzymes by psychroto-
lerant bacteria has important scientific and industrial
interest due to their highly specific activity and catalytic
efficiency at low and moderate temperatures [1]. The
use of cold-adapted enzymes offers various advantages
such as the reduction of undesirable chemical reactions
that take place at high temperature, rapid enzymatic in-
activation through thermal treatment, and reduction in
energy demand required to fuel industrial processes at
higher temperatures [2–4]. These beneficial traits are
particularly useful in the development of sequential mo-
lecular biology processes, low temperature detergents,
food and industrial bio-catalytic enzymes, and for bio-
remediation agents applicable during cold seasons and
in cold regions. In this study, we perform complete
genome sequencing on a psychrotolerant bacterium,
Arthrobacter alpinus strain R3.8 (=DSM 100969), origin-
ally isolated from soil collected from Rothera Point,

Adelaide Island, maritime Antarctica. The optimum
growth temperature range of this bacterium is 10–16 °C,
which rendered it a promising source for discovery of
novel cold-adapted enzymes. The complete genome
sequence of A. alpinus strain R3.8 was generated using
Single Molecule Real Time sequencing technology to
provide a rapid and complete insight into its biotechno-
logical potential. Here, we highlight various genome
features that indicate the potential biotechnological
value of A. alpinus strain R3.8 in the context of xeno-
biotic biodegradation and metabolism, chitin utilization,
and as a potential component in bio-fertilizers.

Organism information
Classification and features
A. alpinus strain R3.8, is a psychrotolerant soil bacter-
ium originally isolated from a soil sample collected at
Rothera Research Station, close to Antarctic Special
Protected Area No.129 (68°07′S, 67°34′W). Strain R3.8
was isolated using basal medium supplied with C6-HSL
as sole carbon source. An isolation temperature of 4 °C
was used to select for psychrophilic or psychrotolerant
bacteria maintained on Luria Bertani (LB) agar [5, 6].
The strain exhibited a 98.6% 16S rRNA nucleotide
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sequence similarity with A. alpinus, the most phylogen-
etically closely related Arthrobacter species with standing
in nomenclature (Fig. 1). The cells are Gram-positive,
coccoid, and approximately 2.0 μM in width and 1.8 μM
in length (Fig. 2). This pairwise 16S rRNA gene sequence
similarity value suggested that strain R3.8 is A. alpinus,
following the species delineation threshold recom-
mended by Stackebrandt and Ebers [7]. API test strips
(API 20 E, API 20 E and API ZYM) incubated at 20 °C
were used according to the manufacturer’s instructions
to determine the physiological and biochemical char-
acteristics as well as enzyme activities of strain R3.8.
The results were compared with type strain of A.
alpinus strain S6-3T. Strain R3.8 showed a closely
similar biochemical profile with S6-3T in all the API
tests. Both strains did not produce catalase and
cytochrome oxidase and were able to hydrolyze
aesculin. Both strains were positive for activities of
acidic phosphatase, esterase (C4), esterase lipase
(C8), leucine arylamidase, α-glucosidase, ß-glucosi-
dase, α-galactosidase, ß-galactosidase, ß-glucuronidase
and α-mannosidase, and could utilizes D-glucose, lac-
tose, L-arabinose, maltose, D-mannose, D-mannitol
and N-acetylglucosamine as sole carbon source. Both
strains were negative in indole production, H2S
production and citrate utilization. Both were also
negative for activities of arginine dihydrolase, lysine
dihydrolase, ornithine dihydrolase, lipase (C14), N-
acetyl-ß-glucosaminidase, trypsin, α-chymotrypsin,

and α-fucosidase, and negative for the fermentation
of glucose, mannitol, sucrose, inositol, sorbitol, rham-
nose, melibiose, and amygdalin. However, strain R3.8
was not able to hydrolyze urea, unlike strain S6-3T,
in both API 20 E and API 20 NE tests. In the API
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Fig. 1 Neighbour-joining phylogenetic tree based on complete 16S rRNA gene sequences of Arthrobacter alpinus strain R3.8 and closely related
species of the genus Arthrobacter. Bootstrap values (expressed as percentages of 1000 replications) are shown at the branching points. Bar, 1 nt
substitutions per 100 nt

Fig. 2 Transmission electron micrograph of Arthrobacter alpinus
strain R3.8. The image was taken under a scanning transmission
electron microscope (STEM, LIBRA 120; Carl Zeiss AG, Germany) at an
operation voltage of 80 kV. The scale bar represents 500 nm
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20 NE test, strain R3.8 was positive for nitrate reduc-
tion, differing from strain S6-3T. In the API 20 E
test, strain R3.8 was positive for fermentation of L-
arabinose but strain S6-3T was negative. In the API
ZYM test, strain R3.8 did not produced alkaline
phosphatase and naphthol-AS-BI- phosphohydrolase
as produced by strain S6-3T.
Minimum Information about the Genome Sequence of

A. alpinus strain R3.8 is summarized in Table 1.

Genome sequencing information
Genome project history
The genome of A. alpinus strain R3.8 was sequenced to
study its bioremediation properties, specifically focusing
on naphthalene biodegradation. The assembled and an-
notated genome of A. alpinus strain R3.8 described in
this paper has been deposited in GenBank (accession
number of CP12677.1), the KEGG database (entry num-
ber of T04095) and the JGI portal with GOLD ID of
Gp0124186 and IMG taxon ID of 2645727552. Sequen-
cing, assembly and annotation of the complete genome
were performed by the UM Omics Centre, University of
Malaya, Malaysia. A summary of the project information
is shown in Table 2.

Growth conditions and genomic DNA preparation
A. alpinus strain R3.8 was grown aerobically in 5.0 ml
LB broth at 16 °C. A volume of 1.0 ml was then centri-
fuged at 2500 x g for 5 min at 4 °C and genomic DNA
was extracted and purified using the MasterPure™ Gram
positive DNA purification kit (Epicenter Technologies,
USA) following the manufacturer’s instructions. The
purity and quality of the genomic DNA obtained were
assessed using a NanoDrop 2000 UV-Vis spectropho-
tometer (Thermo Scientific, USA) and quantified using
Qubit 2.0 fluorometer (Life Technologies, MA, USA).

Genome Sequencing and Assembly
The sheared genomic DNA of A. alpinus strain R3.8 was
constructed into a 20 kb SMRTbell template library fol-
lowing the ‘Procedure and Checklist - 20 kb Template
Preparation Using BluePippin™ Size-Selection System’
protocol [8, 9]. The purified and size-selected SMRTbell
library was sequenced in five SMRT cells using P6C4
chemistry on a PacBio RS II sequencing system (Pacific
Biosciences, USA). Sub-reads generated from the raw
sequencing reads following adapter-removal were used
as input data for de novo assembly using Hierarchical
Genome Assembly Process version 2 [10]. The assem-
bly of the A. alpinus strain R3.8 genome was based on
64,388 quality reads with a mean length of 7,335 bp
resulting in a single circular chromosome consisting of
4,046,453 bp with 101.74-fold overall coverage.

Genome Annotation
Gene prediction and annotation were performed using
the Rapid Annotation Search Tool [11], Rapid Prokary-
otic Genome Annotation [12] and NCBI Prokaryotic
Genome Annotation Pipeline based on the best-placed
reference protein set and GeneMarkS+. Additional gene
identification was made using the KEGG database [13],

Table 1 Classification and general features of Arthrobacter
alpinus R3.8 according to the MIGS recommendations [34]

MIGS ID Property Term Evidence codea

Current
classification

Domain Bacteria TAS [35]

Phylum Actinobacteria TAS [36]

Class Actinobacteria TAS [37]

Subclass Actinobacteridae TAS [37, 38]

Order Actinomycetales TAS [37–40]

Family Micrococcaceae TAS [37–39, 41]

Genus Arthrobacter TAS [39, 42, 43]

Species Arthrobacter alpinus TAS [42]

Strain R3.8 IDA

Gram stain Positive TAS [42]

Cell Shape irregular rods, coccoid IDA

Motility Non-motile TAS [42]

Sporulation Non-sporulating TAS [42]

Temperature
range

4–30 °C IDA

Optimum
temperature

20–25 °C IDA

pH range;
Optimum

6.0–9.0;7.0 IDA

Carbon
source

Acyl-homoserine lactone
(AHLs),Yeast extract

IDA

MIGS-6 Habitat soil IDA

MIGS-6.3 Salinity up to 10% NaCl (w/v) IDA

MIGS-22 Oxygen
requirement

Aerobic TAS [42]

MIGS-15 Biotic
relationship

Free living NAS

MIGS-14 Pathogenicity Non-pathogen NAS

MIGS-4 Geographic
location

Northern end of Rothera
Point, adjacent to Antarctic
Specially Protected Area 129,
Antarctica

NAS

MIGS-5 Sample
collection

December 2009 NAS

MIGS-4.1 Latitude 68°07′S NAS

MIGS-4.2 Longitude 67°34′W NAS

MIGS-4.4 Altitude 33 m NAS
aEvidence codes – IDA: Inferred from Direct Assay; TAS: Traceable Author
Statement (i.e., a direct report exists in the literature); NAS: Non-traceable
Author Statement (i.e., not directly observed for the living, isolated sample, but
based on a generally accepted property for the species, or anecdotal evidence).
These evidence codes are from the Gene Ontology project
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Carbohydrate-Active Enzymes Database ([14], Pathosys-
tem Resource Integration Center [15], and IMG ER [16].

Genome Properties
With 101.74 fold of coverage, the genome of A. alpinus
strain R3.8 was assembled into a 4046,4553 bp circular chro-
mosome with an average GC content of 62.2% (Table 3). No
plasmid sequence was identified in this assembly (Table 1
and Fig. 3). A total of 3697 genes was predicted of which
3268 genes were identified as protein coding genes. A

total of 69 RNA genes were also identified consisting of 18
rRNA (6 5S rRNA, 6 16S rRNA, and 6 23S rRNA) and 51
tRNA genes. 169 (5.17%) were designated as pseudo
genes, 57 (1.74%) genes were frameshifted (Table 3). Fur-
thermore, 61.54% of the predicted genes (3892) are repre-
sented by COG functional categories. Distribution of
these genes and their percentage representation are listed
in Table 4. The genome sequence is deposited in GenBank
(accession number of CP12677.1), from which the genome
sequence data can be accessed in the format of FASTA,
annotated GenBank flat file, graphical and ASN.1 file.

Insights from the genome sequence
Functional annotation results of this genome are access-
ible from the complete genome directory of the KEGG
ORGANISMS database with the organism prefix of aaq.
Further, through the aaq hyperlink, cross-reference
information is available in the form of protein, and
small-molecules interaction network maps, BRITE
biological systems hierarchical classifications, KEGG
modules, and a whole genome map which can be visual-
ized using genome map browser can be accessed
through the subdirectory panel.

Cold-adaptation genes
An antifreeze protein [AOC05_08780], a gene encoding
a protein with ice-nucleation activity reported to be
secreted by psychrotolerant bacterium into the sur-
rounding medium at low temperatures to prevent the
formation of ice crystals [17–19], was identified in the
genome. Various temperature stress response genes were
also identified. For example, the cold shock protein family
that has been shown to allow bacterial response to rapid
temperature shift, allowing bacteria cells to function to
survive above their thermal optimum by serving as nucleic
acid chaperones that may prevent the formation of
secondary structures in mRNA at low temperature [20].
The NCBI locus tags for the cold shock proteins that were
identified are AOC05_RS02130, AOC05_13125, and
AOC05_RS01570.

Biodegradation genes
Naphthalene is a group C (possible human carcinogen)
benzenoid polycyclic aromatic hydrocarbon and is a pol-
lutant widely encountered in nature [21, 22]. In 1990,
naphthalene was recognized as one of the priority pol-
lutants required to be controlled by the Environmental
Protection Agency of the United States. In the genome
of A. alpinus strain R3.8, various genes that are involved
in naphthalene biodegradation were identified, including
salicylate 1-monooxygenase [AOC05_08330], imidazole
glycerol phosphate synthase cyclase [AOC05_05535]
that is involved in 1- and 2-methylnaphthalene degra-
dation, and other genes involved in 1,4-dichlorobenzene

Table 3 Genome statistics of Arthrobacter alpinus R3.8

Attribute Value % of Total

Genome size (bp) 4,046,453 100

DNA coding (bp) 3,578,529 88.44

DNA G + C (bp) 2,516,755 62.20

DNA scaffolds 1 100

Total genes 3892 100

Protein coding genes 3817 98.07

RNA genes 75 1.93

Pseudo gene 359 9.71

Genes in internal cluster 848 21.79

Genes with functional prediction 2870 73.74

Genes assigned to COGs 2395 61.54

Genes with Pfam domains 2987 76.75

Genes with signal peptides 101 2.60

Genes with transmembrane helices 942 24.20

CRISPR repeat 1

Table 2 Project information

MIGS ID Property Term

MIGS 31 Finishing quality Finished

MIGS-28 Libraries used One library, PacBio 20-kb
SMRTbell Library

MIGS 29 Sequencing platforms PacBio RS

MIGS 31.2 Fold coverage 101.74X

MIGS 30 Assemblers HGAP v. 2.2.0.p1 [40]

MIGS 32 Gene calling method Prodigal 1.4, GeneMark,
Glimmer v. 2.13

Locus Tag AOC05

Genbank ID CP012677.1

GenBank
Release Date

28-MARCH-2016

GOLD ID Gp0124186

BioProject ID PRNJA224116

MIGS 13 Source Material
Identifier

DSM 100969

Project relevance Environmental,
Biotechnological
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degradation, namely enoyl-CoA hydratase [AOC05_
00980, AOC05_05365, AOC05_11215, AOC05_11270,
AOC05_11290, AOC05_11310, AOC05_13700, AOC05
_13710], alkaline phosphatase [AOC05_01425, AOC05
_03310, AOC05_12520], nitrilotriacetate monooxy-
genase [AOC05_10370] and aliphatic amidase amiE
[AOC05_16895].
Furthermore, two genes involved in the production of

urease were also identified in the genome of A. alpinus
strain R3.8, urease alpha subunit [AOC05_06080] and
urease gamma subunit [AOC05_18490]). Urease is im-
portant in catalyzing one of the metabolic pathways in-
volved in microbial-induced calcite precipitation. MICP is
a promising approach in the containment of heavy metals
such as lead and cadmium in contaminated soils [23, 24].
Various other xenobiotic biodegradation genes and

pathways of A. alpinus strain R3.8 are available from the
PATRIC server.

Genes with chitinolytic and N-acetylglucosamine
utilization properties
Chitinase is a biotechnologically-important enzyme
widely used in waste management industries for the deg-
radation of chitinous waste into simpler depolymerized
substances [25], in agricultural industries for engineering
of transgenic crops with resistance to fungal infection

[26] and in healthcare industries for the therapeutic
treatment of fungal infections [25, 27]. A range of recent
tudies have identified and characterized novel cold-
active chitinase enzymes with higher catalytic efficiency
at low temperatures [28–31].
The full chitinolytic potential of A. alpinus strain

R3.8 was also identified here, with various genes
involved in chitin and N-acetylglucosamine utilization
being identified, including beta-hexosaminidase (EC 3.
2.1.52) [AOC05_10575, AOC05_02140], eukaryotic type
N-acetylglucosamine kinase (EC 2.7.1.59) [AOC05_
12050], PTS system, N-acetylglucosamine (EC 2.7.1.69)
[AOC05_12345], N-acetylglucosamine-6-phosphate deace-
tylase (EC 3.5.1.25) [AOC05_15120], eukaryotic type N-
acetylglucosamine kinase (EC 2.7.1.59) [AOC05_15120],
chitinase (EC 3.2.1.14) [AOC05_02965], N-acetyl-glucosa-
mine kinase 2, ROK family (EC 2.7.1.59) [AOC05_03295],
transcriptional regulator of N-acetylglucosamine utili-
zation, GntR family [AOC05_07215] and glucosamine-6-
phosphate deaminase (EC 3.5.99.6) [AOC05_10045].

Potential plant growth promoting properties
Application of psychrotrophic PGP bacteria to vegeta-
tion can promote growth and improve cold tolerance of
crops [32]. From the RAST analysis, a total of 22 PGP
genes were identified in the genome of A. alpinus strain

Fig. 3 The genome graphical map of strain R3.8. From the outside to the center: genes on forward stand and genes on reverse strand (color by COG
categories see legend), RNA genes (tRNAs green, rRNAs red, other RNAs black), GC content, GC skew
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R3.8. The genes that are involved in the glutamine
synthetase (GS)-glutamate synthase (GOGAT) pathway
of bacterial ammonia assimilation are glutamine syn-
thetase (GS) [AOC05_04790] and glutamate synthase
(GOGAT) [AOC05_05585]. Full details of these genes,
including nitrogen regulatory protein [AOC05_18400]
and ammonium transporter [AOC05_09335] are avail-
able in Additional file 1: Table S1. Furthermore, five
genes involved in plant hormone biosynthesis, indole
acetic acid biosynthesis, including monoamine oxidase
[AOC05_17530], tryptophan synthase [AOC05_05570,
AOC05_05575], anthranilate phosphoribosyltransfera-
se [AOC05_07190] and N-(5′-phosphoribosyl) anthra-
nilate isomerase [AOC05_12350] were identified.
Production of bacterial IAA is important to assist
plants to overcome abiotic stresses and inhibitory
compounds, and thus contributes to plant growth

stimulation [33]. Several other PGP-relevant genes
involved in trehalose synthesis [AOC05_15010,
AOC05_00140, AOC05_00145, AOC05_00495, and
AOC05_00500] and involved in spermidine synthesis
[AOC05_16565] were also identified in the genome.

Conclusions
We report the complete genome sequence of Arthrobac-
ter alpinus strain R3.8 that was originally isolated from
the soil collected from Rothera Point, Adelaide Island,
maritime Antarctica. The strain was sequenced to ex-
plore its biotechnological potential. By analyzing the
complete genome of A. alpinus strain R3, we identified
genes involved in xenobiotic biodegradation and meta-
bolism, and chitin utilization, as well as genes that po-
tentially promote plant growth. Further comparative
genomic studies with related isolates together with
functional studies will provide better understanding of
the potential biotechnological value of this strain.

Additional file

Additional file 1: Table S1. Genes involved in chitin degradation
identified from RAST analysis. (DOCX 18 kb)
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