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Abstract

Rhodopseudomonas palustris strain 42OL was isolated in 1973 from a sugar refinery waste treatment pond. The
strain has been prevalently used for hydrogen production processes using a wide variety of waste-derived
substrates, and cultured both indoors and outdoors, either freely suspended or immobilized. R. palustris 42OL was
suitable for many other applications and capable of growing in very different culturing conditions, revealing a wide
metabolic versatility. The analysis of the genome sequence allowed to identify the metabolic pathways for
hydrogen and poly-β-hydroxy-butyrate production, and confirmed the ability of using a wide range of organic
acids as substrates.
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Introduction
Rhodopseudomonas palustris is a PNSB belonging to the
class Alphaproteobacteria. According to Imhoff et al. [1],
the term PNSB is used to indicate a physiological group
of anoxygenic phototrophic bacteria, affiliated to both
Alphaproteobacteria and Betaproteobacteria, containing
photosynthethic pigments and able to carry out anoxy-
genic photosynthesis.
Strains of R. palustris have been isolated from a variety

of different environments, from eutrophic lagoons to
moist soils, from freshwater ponds to marine coastal
sediments [2–4]. The very wide spread of R. palustris
throughout a variety of habitats is due to its extreme
metabolic versatility, with all modes of metabolism
represented (autotrophic, heterotrophic, organotrophic,
litotrophic, chemotrophic and phototrophic); moreover,
the organism is a facultative anaerobe [5].

All PNSBs are characterized by the ability of carrying
out anoxygenic photosynthesis; in the presence of oxy-
gen, photosynthesis is inhibited and a number of PNSBs
are able to carry out respiration [4]. Under anaerobic
conditions, and subject to light irradiation, PNSBs are
able to fix nitrogen via nitrogenase; hydrogen is pro-
duced as a by-product of nitrogen fixation. Among
PNSBs, R. palustris is considered a model organism for
studying biological hydrogen production, due to its cap-
acity of efficiently producing hydrogen during organic
wastes degradation [6].
R. palustris 42OL has been used previously for hydrogen

production processes under various conditions [7–22],
i.e., with different substrates, and cultured indoors and
outdoors, using freely suspended or immobilized cells.
However, its first application was in mixed culture in
wastewater treatment [23]. Its biomass was evaluated
for SCP accumulation and amino acid composition
[24]. The accumulation of PHB and its connection to
hydrogen production were investigated [8, 11, 25].
More recently, the biomass of R. palustris 42OL was
also used as a biosorbent for metal removal from waste-
waters [26, 27]. Furthermore, the NMR and X-ray
structures of its 7Fe-8S ferredoxin and cytochrome c2
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were studied [28–30]. The latest application of the
strain was for antibiotic delivery though liposomes
formed with its lipids [31].
The long history and the versatility of this particular

strain render it a very good candidate for further in-
vestigating the basis of its ability to acclimate to very
different culturing conditions.

Organism information
Classification and features
R. palustris 42OL was isolated in 1973 from a catch-
basin collecting the effluents of a sugar refinery waste
treatment pond, in Castiglion Fiorentino (AR), Italy. The
enrichment was carried out aimed at selecting waste de-
grading phototrophs. The isolated microorganism has
been stored since 1973 at CSMA Collection (WDCM
number 147) under the collection name CSMA73/42,
growing anaerobically on solid RPN medium [32] with

malate 2 g L-1 as the carbon source and supplemented
with 0.4 g L-1 of yeast extract. The general features of
the isolate are reported in Table 1.
The isolate 42OL was firstly assigned morphologically

to R. palustris. Phylogenetic analysis performed subse-
quently (unpublished results) by comparing 16S rRNA
gene sequences revealed that the isolate might be indeed
affiliated to the species R. palustris. With the present
work, a further phylogenetic analysis was conducted
and, as shown in the phylogenetic tree in Fig. 1, con-
firms its affiliation.
R. palustris 42OL is a Gram-negative rod shaped bac-

terium, of 0.6–1.2 μm (see Fig. 2a). It replicates by polar
budding (Fig. 2b) and new cells present one single flagel-
lum that is lost in the subsequent phases of cell cycle
[33, 34]. Its photosynthetic apparatus is located on la-
mellar ICMs, clearly visible in Fig. 2c, d, as characteristic
of this species [2]. The major carotenoid molecules that

Table 1 Classification and general features of Rhodopseudomonas palustris 42OL, according to MIGS standards [45]

MIGS ID Property Term Evidence codea

Classification Domain Bacteria TAS [46]

Phylum Proteobacteria TAS [47]

Class Alphaproteobacteria TAS [48, 49]

Order Rhizobiales TAS [49, 50]

Family Bradyrhizobiaceae TAS [49, 50]

Genus Rhodopseudomonas TAS [1, 51, 52]

Species Rhodopseudomonas palustris TAS [51, 53, 54]

strain: 42OL (CSMA73/42)

Gram stain Negative NAS

Cell shape Rod IDA

Motility Motile only during first part of cell cycle NAS

Sporulation Non sporulating

Temperature range mesophilic NAS

Optimum temperature 28–30 °C IDA

pH range; Optimum 6.0–8.0; 6.8 TAS [32]

Carbon source VFA, CO2 IDA

MIGS-6 Habitat Sugar refinery waste pond IDA

MIGS-6.3 Salinity Not determined

MIGS-22 Oxygen requirement Facultatively anaerobic IDA

MIGS-15 Biotic relationship Free-living NAS

MIGS-14 Pathogenicity Non-pathogen NAS

MIGS-4 Geographic location Castiglion Fiorentino, AR, Italy IDA

MIGS-5 Sample collection 1973 IDA

MIGS-4.1 Latitude 43° 19' 30.054" IDA

MIGS-4.2 Longitude 11° 53' 18.4518" IDA

MIGS-4.4 Altitude 248 m IDA
aEvidence codes - IDA inferred from direct assay, TAS traceable author statement (i.e., a direct report exists in the literature), NAS non-traceable author statement
(i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence
codes are from the Gene Ontology project [55]

Adessi et al. Standards in Genomic Sciences  (2016) 11:24 Page 2 of 7

http://dx.doi.org/10.1601/nm.1494
http://doi.org/10.1601/strainfinder?urlappend=%3Fid%3DCSMA73
http://dx.doi.org/10.1601/nm.1494
http://dx.doi.org/10.1601/nm.1494
http://dx.doi.org/10.1601/nm.1494


Fig. 1 Maximum Likelihood dendrogram based on 16S rRNA gene; Bar = 1.1 indicates the nucleotides substitution rate. Numbers at the nodes
indicate bootstrap values after 500 random replicates. Numbers after strain name indicate the GI code. Sequences have been selected after BLAST
Explorer [56] search for most similar sequences present in GenBank database. Dendrogram has been constructed by using the Maximum
Likelihood algorithm with default options present in phylogeny.fr web server [56]. Strains TIE-1 and DX-1 have completely sequenced genomes;
ATCC17001 is the type strain and is indicated asT

Fig. 2 Electron micrographs of Rhodopseudomonas palustris 42OL grown on RPN medium; a whole cell, longitudinal section; b cell during polar
budding (white arrow), longitudinal section; c whole cell containing PHB granules. d lamellar ICMs in whole cells, transversal section; PHB,
poly-β-hydroxybutyrate granules; ICM, intra-cytoplasmic membranes; P, polyphosphate granules; CW, cell wall
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are present in the photosynthetic apparatus of this strain
are spirilloxanthin, rhodopin, rhodovibrin, anhydrorho-
dovibrin and lycopene (our unpublished results).
The first characterization of R. palustris 42OL was in

terms of protein accumulation and amino acid com-
position on different carbon and nitrogen sources.
Malate and ethanol were tested as carbon sources,
both under nitrogen fixing (N2 sparged) and non-
fixing (NH4

+ supplied) conditions. A significantly lower
amount of protein was produced in presence of etha-
nol, while the nitrogen source did not have any effect.
However, both nitrogen and carbon sources signifi-
cantly influenced the amino acid composition of the
protein biomass [24].
The carbon metabolism of the strain was investigated

in terms of substrates that could be used for growth and
hydrogen production. Short chain fatty acids such as
acetate, pyruvate, lactate, malate and succinate were
found to be photodissimilated by the strain with sub-
strate conversion efficiency of 40, 52, 61, 56, and 67 %,
respectively [35]. Butyrate was found to be suitable for
growth and hydrogen production but with the signifi-
cantly lower substrate-to-hydrogen conversion efficiency
of 9 % (unpublished data).
Vincenzini et al. [36] characterized nitrogenase activity

of R. palustris 42OL in terms of hydrogen production
and acetylene reduction with different atmosphere
composition and at different pH values. The optimal con-
ditions for hydrogen production were under Argon gas as
the atmosphere, for early logarithmic stage cells, at
pH 6.8. The authors also demonstrated the presence of a
hydrogenase enzyme, recycling the hydrogen produced
during late logarithmic and light-limited stage.
Evidences of its suitability for the treatment of wastes

combined with hydrogen production were reported [35],
using wastewaters deriving from a sugar refinery and a
paper mill. The same strain was shown to grow and pro-
duce hydrogen on different substrates such as vegetable
wastes [15], olive mill wastewaters [12, 13] and dark fer-
mentation saline effluents [14].
PHB is synthetized as a reservoir for reducing equiva-

lents by the strain, in this way competing with hydrogen
production [25], especially when grown on acetate [25],
or when subject to phosphorus starvation [11]; in this
condition, R. palustris 42OL could accumulate up to
18 % w/w of PHB on cell dry weight. R. palustris 42OL
accumulates PHB in large amorphous granules, as shown
in Fig. 2. Glycogen is synthetized as well as carbon
and energy reserve [25].
Another relevant characteristic of this strain is the

possibility of cultivation outdoors, under light/dark
cycles both for biomass [37, 38] and hydrogen pro-
duction [10, 11, 22], with an impressive capability of
the photosystem to take advantage of the high light

conditions that take place during the central hours of
the day [21].

Genome sequencing information
Genome project history
The organism was selected for genome sequencing on
the basis of its metabolic versatility and biotechnological
relevance, as witnessed by its long history and by the
diversity of applications. Project information is available
from the Genomes OnLine Database [39], under the GOLD
study ID Gs0114708. The WGS sequence is deposited in
GenBank (LCZM00000000).

Growth conditions and genomic DNA preparation
R. palustris 42OL (CSMA73/42) was maintained anaer-
obically on solid RPN medium [32] with malate 2 g L-1

as the carbon source and supplemented with 0.4 g L-1 of
yeast extract. For the extraction of genomic DNA a sin-
gle colony of cells grown on agar plate was harvested
and cultured anaerobically on the same liquid medium
in 20 mL sealed glass tubes, at room temperature with a
light irradiance of 80 μmol of photons m-2 s-1. Cultures
were then transferred into 100 ml round bottles and the
headspace was exchanged with Argon gas for anaerobio-
sis. Cells were harvested at an OD660 = 0.5, in mid-
logarithmic phase, pelleted and stored at −20 °C. DNA
was isolated from the cells using a CTAB bacterial gen-
omic DNA isolation method, and checked on agarose
gel. The genomic DNA purity was assessed by spectro-
photometric measurements [40].

Genome sequencing and assembly
The draft genome sequence was generated using the
Illumina technology. A Nextera XT DNA library was
constructed and sequenced using Illumina MiSeq plat-
form which generated 23,625,870 reads. After trimming,
a total of 7,574,912 paired end reads were obtained and
assembled into 308 high quality contigs (larger than
5419 bp each) using Abyss 1.0.0 software present on the
Galaxy Orione server [41]. A summary of the project in-
formation is shown in Table 2.

Genome annotation
Genes were identified using the prokaryotic genome anno-
tation software Prokka 1.4.0 [42] (Galaxy Orione server
[40]). For gene finding and translation, Prokka makes use
of the program Prodigal [43]. Homology searching
(BLAST, hmmscan) was then performed using the trans-
lated protein sequences as queries against a set of public
databases (CDD, PFAM, TIGRFAM) as well as custom da-
tabases that come with Prokka. Additional gene prediction
analysis and functional annotation were performed within
the CBS Bioinformatics Tools platform developed by the
Technical University of Denmark (Table 3).
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Genome properties
The genome of R. palustris 42OL resulted to be
5,128,858 bp in length with a GC content of about 65.74 %
(Table 3). It was predicted to contain 4767 genes, 4715 of
which coded for proteins and 52 for RNA (tRNA and
rRNA). The majority of the predicted genes (68.74 %) could
be assigned to one of of 25 functional COG categories
whilst the 8.42 % of the remaining genes were annotated as
hypothetical and 38.9 % as unknown function proteins. The
distribution of genes into COGs functional categories is
presented in Table 4.

Insights from the genome sequence
The genome of R. palustris 42OL contained, as ex-
pected, genes related to nitrogen fixation (nif H, D, K, E,
N, B, U, X, Q, W, Z), genes involved in carbon fixation
(RubisCO), the complete tricarboxylic acid cycle, the
glyoxylate shunt, a Embden-Meyerhof pathway, and a
pentose phosphate pathway. Genes coding for the syn-
thesis of glycogen and poly-β-hydroxyalkanoates as car-
bon storage polymers were also found, as well as genes
related to the photosynthetic apparatus, similarly to all
the other R. palustris strains so far sequenced.
The genome of R. palustris 42OL was analyzed in

terms of synteny with other strains sequenced. The gen-
ome was found to be highly syntenic with those of other
strains of R. palustris (data not shown). Exclusive reac-
tions were then mapped on KEGG with respect to other
R. palustris strains sequenced so far (BisA53, BisB18,
BisB5, CGA009, Haa2, TIE1) by using DuctApe v 0.17.2
software [44]. Data obtained are reported in Table 5. The
proteome size ranged between 4392 and 5242 protein

Table 2 Project information

MIGS ID Property Term

MIGS 31 Finishing quality High-quality Draft

MIGS-28 Libraries used Paired-end Nextera XT DNA

MIGS 29 Sequencing platforms Illumina MiSeq

MIGS 31.2 Fold coverage 366 ×

MIGS 30 Assemblers Abyss version 1.0.0
(Galaxy/CRS4 Orione server)

MIGS 32 Gene calling method Prokka version 1.4.0
(Galaxy/CRS4 Orione server)

Locus Tag AB661

Genbank ID LCZM00000000

GenBank Date of Release 5 June 2015

GOLD ID Gs0114708

BIOPROJECT PRJNA283573

MIGS 13 Source Material Identifier CSMA73/42

Project relevance Metabolic versatility
(hydrogen production),
Biotechnology

Table 3 Genome statistics*

Attribute Value % of total

Genome size (bp) 5,128,858 100.00

DNA coding (bp) 4,388,835 85.00

DNA G + C (bp) 3,369,731 65.74

DNA scaffolds 1 100.00

Total genes 4767 100.00

Protein coding genes 4715 98.91

RNA genes 52 1.09

Pseudo genes NA NA

Genes in internal clusters NA NA

Genes with function prediction 3277 68.74

Genes assigned to COGs 3660 76.78

Genes with Pfam domains 3312 69.48

Genes with signal peptides 449 9.41

Genes with transmembrane helices 1212 25.42

CRISPR repeats 1 0.09

*NA, not available

Table 4 Number of genes associated with general COG
functional categories

Code Value % age Description

J 170 3.61 Translation, ribosomal structure and biogenesis

A 0 0.00 RNA processing and modification

K 218 4.62 Transcription

L 144 3.05 Replication, recombination and repair

B 1 0.02 Chromatin structure and dynamics

D 25 0.53 Cell cycle control, Cell division, chromosome
partitioning

V 57 1.21 Defense mechanisms

T 192 4.07 Signal transduction mechanisms

M 215 4.56 Cell wall/membrane biogenesis

N 80 1.70 Cell motility

U 37 0.78 Intracellular trafficking and secretion

O 165 3.50 Posttranslational modification, protein
turnover, chaperones

C 267 5.66 Energy production and conversion

G 169 3.58 Carbohydrate transport and metabolism

E 358 7.59 Amino acid transport and metabolism

F 59 1.25 Nucleotide transport and metabolism

H 145 3.08 Coenzyme transport and metabolism

I 239 5.07 Lipid transport and metabolism

P 242 5.13 Inorganic ion transport and metabolism

Q 97 2.06 Secondary metabolites biosynthesis,
transport and catabolism

R 397 8.42 General function prediction only

S 383 8.12 Function unknown

– 1055 22.38 Not in COGs

The total is based on the total number of protein coding genes in the genome
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coding genes, corresponding respectively to strains BisB5
and TIE1. The total number of reactions ranged between
2442 and 3012, respectively for strains BisA53 and
CGA009. Strain Haa2 resulted to have the highest number
of unique reactions.

Conclusions
In this study, we characterized the genome of R. palustris
strain 42OL isolated from a wastewater pond of a sugar
refinery in 1973. Along the last four decades, this
strain has been successfully used in a wide number of
applications, from hydrogen production on wastewaters
(its major application) to PHB production. The present
genome analysis supported those findings.
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