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Abstract

The DOE-JGI Microbial Genome Annotation Pipeline performs structural and functional annotation of microbial
genomes that are further included into the Integrated Microbial Genome comparative analysis system. MGAP is
applied to assembled nucleotide sequence datasets that are provided via the IMG submission site. Dataset
submission for annotation first requires project and associated metadata description in GOLD. The MGAP sequence
data processing consists of feature prediction including identification of protein-coding genes, non-coding RNAs
and regulatory RNA features, as well as CRISPR elements. Structural annotation is followed by assignment of protein
product names and functions.
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Introduction and Requirements
The DOE-JGI Microbial Genome Annotation Pipeline
performs structural and functional annotation of bacter-
ial and archaeal genomes included into the Integrated
Microbial Genome (IMG) system [1]. Annotation con-
sists of the identification of RNA and protein-coding
genes and repeats, as well as the prediction of functions
for each gene (product name assignment). The anno-
tated microbial genomes datasets produced by the
MGAP are integrated into IMG, where they can be ana-
lyzed or manually edited in the context of a comprehen-
sive set of publicly available genomes.
Compared to the previous version, the pipeline con-

tains several new steps (e.g. the addition of several mod-
ules that form a data preprocessing track), some tool
replacements (e.g. Prodigal is now used for ab intio gene
prediction instead of GeneMark and Metagene Annota-
tor), as well as updated software and models (e.g. the
rRNA Hidden Markov Models). So far this version of
the pipeline has processed more than 800 microbial

genomes with at least 10 new ones being processed on a
daily basis. While no comprehensive reannotation of all
genomes processed by the older version of the pipeline
has been planned, point updates of the features affected
by the pipeline changes are under way. Some of them,
including CRISPR annotations and Pfam and TIGRfam
assignments, have been finalized. The MGAP requires a
multi-FASTA file of assembled nucleotide sequences as
an input for gene calling. In addition, each sequence
dataset submitted for annotation needs to be associated
with an analysis project that has already been specified
in the Genomes OnLine Database [2]. Microbial genome
annotation consists of three stages: sequence data pre-
processing, feature prediction, and functional annota-
tion. Feature prediction (which includes gene prediction
and repeat identification) produces a GenBank file that
does not have any functional information for the pre-
dicted genes. Subsequently, these genes are assigned
functions and are integrated into IMG.

Procedure and Implementation
The MGAP stages and individual steps are further
described below.
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Sequence data preprocessing
All genome datasets undergo preprocessing in order to
ensure that only good quality sequences are processed in
the gene prediction stage, as illustrated in Fig. 1(i). First,
all ambiguous nucleotides in the sequence datasets are
replaced by N’s and sequences with characters that do
not belong to the {A,C,G,T,N} set are not considered fur-
ther. Additionally, the headers in multi-FASTA files are
changed to ensure that all contig and scaffold names are
unique and compatible with the tools employed in sub-
sequent stages. The pipeline creates a mapping file,
which records the correspondence between old and new
sequence headers. Furthermore, sequences shorter than
150 nt are removed. Second, the sequences are trimmed
in order to remove trailing ‘N’s. The trimmed sequences
then have to pass a low complexity filtering where low
complexity noisy sequences are identified using the
DUST [3] application and eliminated. Finally, for
finished circular genomes the pipeline attempts to detect
the origin of replication by running BLASTx against an
in-house curated database of genes located near the ori-
gin of replication. If an origin of replication is success-
fully detected, the sequence is permuted so that it starts
at that position.

Feature prediction
As illustrated in Fig. 1(ii), feature prediction starts with
the detection of CRISPR arrays, followed by non-coding
RNA genes (tRNA, rRNA and other RNA genes), and fi-
nally the prediction of protein coding genes.
CRISPR elements are identified using the programs

CRT [4] and PILER-CR v1.06 [5]. For PILER-CR the

maximum spacer length is set to 100 and the CRISPR
element needs to have at least 5 repeats, which have at
least 90 % identity to each other and at least 75 % iden-
tity to the consensus sequence of the repeat. For CRT
the pipeline runs a modified version of the latest official
CRT-CLI 1.2 version. Specifically, the modified CRT has
the capability to read multi-FASTA files, detect truncated
repeats at the ends of the contigs/scaffolds and deal with
spacer artifacts and repeats that contain Ns. This version
also executes checks for repeat and spacer length ratios,
while the length and similarity checks are performed as
part of “all vs. all” spacer and repeat comparisons. Add-
itionally, the progression step of the sliding search window
was reduced to 1, while threshold values and search
ranges, which were strictly defined in the original soft-
ware, can be changed from default values on the com-
mand line together with the new options and arguments.
In our modified CRT the default values for the mini-

mum and maximum repeat lengths are set to 20 and
50 bp, respectively, while the minimum and maximum
spacer lengths are set to 20 and 60 bp, respectively. The
ratio of the spacer lengths to the repeat lengths have to
be between 0.6 and 2.5. The search window is 7 bp long
and an element needs to have at least 3 repeats that have
a minimum of 70 % identity. The predictions from
PILER-CR and CRT are concatenated and, in case of
overlapping predictions, the CRT prediction is retained.
Protein-coding genes and non-coding RNA genes are

identified using a combination of Hidden Markov
Models and sequence similarity-based approaches. The
first category of non-coding RNAs, tRNAs, are predicted
using tRNAscan-SE 1.3.1 [6], and the best scoring

Fig. 1 Genome sequence data preprocessing (i), structural (ii) and functional annotation (iii) steps of the MGAP v.4
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predictions are selected. Ribosomal RNA genes (5S, 16S,
23S) are predicted using hmmsearch tool from the pack-
age HMMER 3.1b2 [7] and a set of in-house curated
HMMs derived from an alignment of full-length rRNA
genes selected from IMG isolate genomes. Both
tRNAscan-SE and hmmsearch use a domain-specific set
of models for Bacteria and Archaea, which is selected
based on the taxonomic information provided in the
corresponding GOLD Analysis Project.
MGAP also predicts other non-coding RNAs and

regulatory RNA features, such as riboswitches. With the
exception of tRNAs and rRNAs, all models from Rfam
10.1 [8] are used to search the genome sequences. For
faster detection, sequences are first compared to a data-
base containing all the ncRNA genes and other RNA
features in the Rfam database using BLASTn, with a very
loose e-value cutoff (1.0e −10). Subsequently, contigs/
scaffolds with hits to this database are searched against
Rfam covariance models using the program cmsearch
from the INFERNAL 1.0.2 package [9].
The identification of protein-coding genes is per-

formed using the Prodigal v2.6.2 ab initio gene predic-
tion program [10]. Overlaps between predicted features
of different type (e. g. ncRNAs and protein-coding
genes) get resolved based on an in-house curated set of
rules. Every annotated gene is assigned a locus tag of the
form PREFIX_SUFFIX where the prefix is the identifier
of the GOLD Analysis Project associated with the gen-
ome dataset and the suffix is a number that identifies a
certain gene on a particular sequence. This assignment
scheme guarantees that each gene within a sequencing
project gets a unique locus tag. The output of this stage
is a GenBank format genome data file.
Every GenBank file by the pipeline or submitted by a

user, must pass an additional validation step before it is
forwarded to the next stage for functional annotation.
The validation involves checking the file format, match-
ing the gene coordinates to their translations and se-
quence lengths. The validation also removes phage PhiX
sequences, which can be found as a common contamin-
ant in isolate genomes sequenced with Illumina technol-
ogy [11]. These are identified by running BLASTn
against the PhiX genome sequence with an e-value of
0.01 and 90 % identity. If a hit covers 80 % or more of a
query contig/scaffold, the latter gets removed. As a
final step the validation script also assesses the quality
of a genome, which determines whether it will be in-
cluded as a reference genome for taxonomic compari-
sons with other genomes and metagenomes. A
genome could get marked as “low quality” and ex-
cluded from taxonomic reference database if (a) it
lacks phylum-level taxonomic assignment or (b) its
coding density (defined as total length of nucleotide
sequence of predicted genes divided by the total

length of nucleotide sequence) is less than 70 % or
greater than 100 % or (c) there are more than 300 se-
quences per million base pair or (d) the number of
genes per million base pair is less than 300 or greater
than 1200. These values were set after manual ana-
lysis and benchmarking and are intended to prevent
highly fragmented genomes and/or genomes with high
rate of sequencing artifacts from being included in a
taxonomic reference database.

Functional annotation
After a genome dataset undergoes structural annotation,
the resulting protein-coding genes are compared to pro-
tein families and the proteome of selected “core” genomes
which are publicly available, and a protein product name
is assigned to each gene as discussed below and illustrated
in Fig. 1(iii).

Protein families

1. COG & KOG assignment: protein sequences are
compared to COG PSSMs obtained from the CDD
database [12] using the program RPS-BLAST at an
e-value cutoff of 1e–2, with the top hit retained. The
alignment length needs to be at least 70 % of the
consensus sequence length.

2. KEGG Orthology term assignment: Genes are
associated with KO terms [13] as follows. First, the
genes that can be unambiguously mapped to the
entries in KEGG Genes database are assigned the KO
terms associated with the corresponding KEGG gene.
The gene to KEGG gene mapping is based on NCBI’s
GI numbers and GeneIDs. For genes that are not
mapped to KEGG genes, USEARCH is run against
the database of KEGG genes by applying UBLAST
[14]. The results of this search are organized in a list
of candidate KO assignments. KO terms are assigned
to genes using a subset of this list, whereby the
threshold is defined by an E-value cutoff of 1e–5, KO
assignments are selected from the top 5 hits, with
30 % or better alignment sequence identity, and align-
ment percentage of at least 70 % over the length of
the query gene and KEGG subject gene.

3. MetaCyc assignment: genes are associated with
MetaCyc [15] reactions as follows. First, genes are
mapped to KO terms as described above, whereby
KO terms are associated with Enzyme Commission
numbers using the KEGG KO term to Enzyme
relationship provided by KEGG. Next, genes are
associated with MetaCyc reactions via EC numbers.

4. Pfam & TIGRfam assignments: protein sequences
are searched against Pfam [16] and TIGRfam [17]
databases using HMMER 3.0. For TIGRfam, the
noise cutoff (−−cug_nc) is used, with hits below the
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trusted cutoff and at/above the noise cutoff flagged
as “marginal”. For Pfam, the gathering threshold
(−−cut_ga) is used inside the pfam_scan.pl script.
The script also helps resolving overlaps between hits
to Pfam models from the same clan in order to
generate final Pfam assignments.

5. InterPro Scan: Additional protein family annotations
for SMART, PrositeProfiles, PrositePatterns, and
SuperFamily are provided by InterPro Scan
(run with default parameters) [18].

IMG terms
IMG terms [19] were introduced with the goal of address-
ing problems related to the consistency of functional an-
notations in IMG. IMG terms model the relationship
between the protein product of a gene and its mature,
fully functional form. Accordingly, three types of IMG
terms have been introduced: protein product, modified
protein and protein complex. Initial assignment of genes to
IMG terms is done manually, whereby each IMG term is
functionally coherent and is not required to contain se-
quences that share similarity. These IMG terms are re-
corded in a BLAST-able database that is used for
propagating the terms to other genes following three com-
plementary methods applied in succession:

1. Method 1 is based on the BLAST-able database of
gene sequences that have been associated manually
with IMG terms. Gene sequences of new genomes are
compared against this database: a gene g with hit to a
sequence associated with IMG term t satisfying the fol-
lowing criteria will be assigned this IMG term: top hit,
e-value < = 1e-5, > = 90 % identity, alignment > = 80 %
on both query and subject sequences, smallest to lar-
gest sequence length ratio of query and subject se-
quence > = 70 %.

2. Method 2 is applied to genes that are not assigned
an IMG terms using Method 1 and is based on a set
of rules devised by domain experts at JGI for
mapping functional annotations (COG, Pfam,
TIGRfam) to IMG terms. An example of such a rule
is: “assign IMG Term 6 (replicative DNA helicase
loader DnaB) to a gene if the gene is annotated with
COG3611 (replication initiation/membrane
attachment protein)”.

3. Method 3 is applied to genes that are not assigned
an IMG term using Methods 1 and 2, and is based
on gene bi-directional best hits (BBHs) across all
genomes available in IMG. For a gene g:
a. Get g’s top 5 BBH genes satisfying the following

conditions: sequence alignment length > = 70 %,
percent identity > = 25 %. No IMG terms can be
assigned to gene g unless there are at least 5 BBH
genes satisfying these conditions.

b. Let Set T be the set of all manually assigned IMG
terms (i.e., not automatically populated terms) of
any of the 5 BBH genes above. Check each term
T1 in Set T: (i) if the 5 BBH genes have
conflicting term assignments (e.g., some were
assigned term T1, while others were assigned
term T2), then no terms in Set T can be assigned
to gene g; (ii) if there are no conflicting IMG
term assignments and at least 2 of the 5 BBH
genes are associated with term T1, then assign T1
to gene g; (iii) if there are no conflicting IMG
term assignments but fewer than 2 of the 5 BBH
genes are associated with the same IMG term,
then repeat this step with top 10 BBH genes.

Bi-directional best hits are computed between protein
sequences of pair of genomes using USEARCH by apply-
ing UBLAST with a nominal e-value cutoff of 1e–2. An
effective database size (−ka_dbsize 700,000,000) is used
in order to make the e-values comparable across pairs of
genome computations.

Protein product names
There are two gene product names associated with every
gene in IMG: (i) original gene product name, which is
included from the original genome datasets archived at
GenBank or submitted by users for inclusion into IMG
without the IMG product name assignment; (ii) IMG
product name, generated by the Inative product name
assignment procedure of the IMG described below.
Every gene in IMG with IMG product name is associ-
ated with an “IMG Product Source” attribute, which spe-
cifies the source of the IMG assigned product name.
The value of this field can be:

� ITERM:xxxxx: The source of the gene product name
is its associated IMG term xxxxx;

� TIGRxxxxx: The source of the gene product name is
its associated TIGRfam xxxxx;

� COGxxxx: The source of the gene product name is
its associated COGxxxx;

� PFAMxxxx: The source of the gene product name is
the associated PFAMxxxx.

IMG Protein product names are assigned to genes
in two stages: (i) product names are assigned based
on IMG terms whenever they are available, (ii) if
IMG terms are not available then protein family asso-
ciations for genes in individual genome datasets are
employed for assigning product names. Protein prod-
uct names assignments based on IMG terms rely on
protein sequence similarities between the genes of the
new dataset and genes of all other genomes in the
IMG data warehouse.
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The IMG protein product of a gene g is assigned as
follows:

1. If gene g is associated with one or more IMG terms,
then the IMG term(s) becomes the new IMG
product name(s) of g.

2. For genes that are not associated with IMG terms
based on Methods 1–3 described above, and
therefore do not have a product name based on
IMG terms, assignment of TIGRfam names as
product names is attempted: the gene without a
product name is assigned a name of a TIGRfam if it
has a TIGRfam hit. If a gene has a hit to only one
TIGRfam, the name of this TIGRfam is assigned; if
more than 1 TIGRfam is assigned, the name of a
TIGRfam of the type “equivalog” is assigned.

3. For genes that were not associated with a product
name using IMG terms or TIGRfam names, product
names are assigned based on the name of their COG
hit. If the COG name is “uncharacterized conserved
protein” or contains “predicted”, the name has the
format “COG.cog_name, COG.cog_id”.

4. For genes that were not associated with a product
name using IMG terms, TIGRfam or COG names,
product names are assigned based on the name of
their Pfam hit, where the product name is a
concatenation of Pfam family description (attribute
“description” in pfam_family) with “protein”. If a
protein has hits to multiple Pfams, their descriptions
are concatenated with “/” as a separator and a word
“protein” added in the end.

A translation table for protein product names based
on IMG terms, TIGRfam, COG and Pfam descriptions is
employed in order to ensure that the product names are
compatible with GenBank requirements when the data-
sets are submitted to GenBank.

Functional annotation sources

� COG 2014 Version (November 2014)
� KEGG Release 71.0, July 2014
� MetaCyc Release 18.1, June 2014
� PFAM 28.0, May 2015
� TIGRfam Release 14.0, January, 2014
� InterPro Data Release 48

Prediction of protein sequence features
Signal peptide feature prediction employs SignalP 4.1 [20].
The model used is determined by the gram stain annota-
tion field for the genome (gram+, gram-, Euk). If the gram
stain field is not specified in the IMG data, assume it’s
gram- (gram negative).

Transmembrane helices are predicted using TMHM
M2.0c [21].
Both tools get executed with the default parameters.

Discussion
The DOE-JGI MGAP performs annotation for bacterial
and archaeal genomes. The pipeline consists of custom
scripts and publicly available tools. Consistency and re-
producibility of the results produced by the MGAP de-
pend on the tools and annotation resources used in the
pipeline. Thus, updated versions of resources such as
Rfam, Pfam, and KEGG may improve the breadth and
depth of functional annotations.
In order to apply the DOE-JGI MGAP on their data-

sets, users need to first specify their analysis projects in
GOLD and then provide their genome datasets via
IMG’s data submission site.
We will continue to extend the MGAP with the goal

of improving the identification and characterization of
genes in the genome datasets it processes.
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