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Draft genome sequence of Halomonas meridiana
R1t3 isolated from the surface microbiota of the
Caribbean Elkhorn coral Acropora palmata
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Abstract

Members of the gammaproteobacterial genus Halomonas are common in marine environments. Halomonas and
other members of the Oceanospirillales have recently been identified as prominent members of the surface
microbiota of reef-building corals. Halomonas meridiana strain R1t3 was isolated from the surface mucus layer
of the scleractinian coral Acropora palmata in 2005 from the Florida Keys. This strain was chosen for genome
sequencing to provide insight into the role of commensal heterotrophic bacteria in the coral holobiont. The
draft genome consists of 290 scaffolds, totaling 3.5 Mbp in length and contains 3397 protein-coding genes.
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Introduction
As the name denotes, the first isolated members of the
genus Halomonas were acquired from saline environ-
ments, and members of this halotolerant genus are in-
creasingly isolated from a wide variety of marine
environments. While the type species of Halomonas
meridiana was isolated from an Antarctic saline lake [1],
several strains of this species have been isolated from
Acropora corals, including strain R001 from Palk Bay,
India [2] and strains R1t3 and R1t4 from A. palmata in
the Florida Keys [3]. Halomonas spp. have also been iden-
tified in surveys of uncultured bacteria in the surface
microbiota of Acropora corals from the Caribbean and
Indonesia [4], while the microbiota of A. millepora corals
from the Great Barrier Reef are more commonly
dominated by members of another genus in the order
Oceanospirillales, Endozoicomonas [5]. Members of the
Oceanospirillales are increasingly identified as import-
ant components of the stable, commensal coral micro-
biota, and the loss of commensal bacteria is often
correlated with disease symptoms [6–8].

Coral-associated commensal bacteria may inhibit patho-
gens from colonizing the carbon-rich coral mucus layer by
outcompeting non-commensals or through the active
production of antimicrobial compounds, as previously
demonstrated in Halomonas strain R1t4 [3]. We chose
H. meridiana strain R1t3 for whole genome sequen-
cing as a representative coral commensal bacterium
from Acropora corals. To date, only one other coral
commensal bacterial strain has been sequenced: Endo-
zoicomonas montiporae from the encrusting pore coral,
Montipora aequituberculata, isolated from Taiwan [9].

Organism information
Classification and features
Within the polyphyletic family Halomonadaceae [10],
Halomonas strain R1t3 is a member of the Group 2
assemblage, which may represent a separate genus, how-
ever defining characteristics have not been clearly deter-
mined for this potential revision [11]. The small subunit
ribosomal RNA gene sequence of Halomonas strain
R1t3 is nearly indistinguishable from the sequence in
type strains of both H. meridiana and H. aquamarina
(Fig. 1). Comparison of functional gene loci used in a
previously published MLSA study [11] reveal that the
loci secA, atpA, and rpoD are approximately 99 % identi-
cal between the two type strains and strain R1t3. In con-
trast, gene sequences for the gyrB locus are identical in
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the type strains, but only 87 % similar to the gyrB locus
in strain R1t3. Strain R1t3 also exhibits high sequence
identity to the small subunit ribosomal RNA gene to
strain RA001 isolated from Acopora coral in India, and
to uncultured Halomonas retrieved from Acropora corals
in Mexico and Indonesia (Fig. 2).
While the strain was originally isolated using sterile

coral mucus as a growth substrate [3], subsequent
growth in both marine broth and Luria broth have been
successful. H. meridiana strain R1t3 is aerobic, hetero-
trophic, and utilizes a wide range of carbon sources, in-
cluding D-galatonic acid γ-lactone, D-galacturonic acid,
D-glucosaminic acid, γ-hydroxybutyric acid, itaconic
acid, glycyl-L-glutamic acid, L-phenylalanine, L-serine,
L-threonine, phenylethylamine, α-cyclodextrin, Tween
80, N-acetyl-D-glucosamine, D-cellobiose, i-erythritol,
α-D-lactose, D-mannitol, putrescine, D,L-α-glycerol
phosphate, glucose-1-phosphate, glycogen, Tween 40,
and L-asparagine [12]. The carbon sources utilized by the
type strains of H. meridiana and H. aquamarina have
been previously documented using Biolog GN2 plates [13]
and carbon sources utilized by Halomonas strain R1t3
(33E7) have been previously documented using Biolog
Ecoplates [12]. Of the 23 substrates in common between
the two types of Biolog plates, strain R1t3 can use 12 more

substrates than H. meridiana and 16 more substrates than
H. aquamarina (see Additional file 1).
Halomonas strain R1t3 grows at 20 to 37 °C in culture,

with the highest growth rates at 30 °C (Table 1). No
growth was detected at 10 or 50 °C. Strain R1t3 grows at
pH 7 to 9, with the highest growth rates at pH 8. Weak
growth was detected at pH 6.5 and 10 and no growth
occurred at pH 6 and 10.5. Cultures of strain R1t3 pro-
duce an unidentified acid during growth, and buffered
growth medium at pH 10 was reduced to pH 8 within
24 h of inoculation. Strain R1t3 is halotolerant, exhibit-
ing growth at 2 to 5 % (w/v) sea salt (Coral Pro Salts,
Red Sea, Houston, TX) in liquid cultures and growth on
10 % sea salt marine agar. No growth was detected on
20 % sea salt marine agar or at 0 % (w/v) sea salt.
Cells of strain R1t3 are around 2 μm long and 1 μm

wide (Fig. 3). Cells are motile and multi-flagellated, al-
though the exact number of flagella per cell could not be
determined. Colonies grown on marine agar plates are
smooth, round, and beige.

Symbiotaxonomy
Halomonas strain R1t3 was isolated from the surface
mucus layer of the scleractinian coral Acropora palmata
Lamarck 1816 (commonly known as Elkhorn Coral),

Fig. 1 Phylogenetic tree of select Halomonas type species and H. meridiana strain R1t3. The phylogenetic placement H. meridiana strain R1t3 in
relation to select type species of marine and salt-tolerant Halomonas. Sequences from the 16S rRNA gene were aligned with MUSCLE and
trimmed to 1154 bp, the length of the shortest sequence. Evolutionary history was inferred using the Maximum Likelihood method based on the
Tamura-Nei model [26]. Branch lengths are measured in the number of substitutions per site. Branch labels indicate the percentage of trees in
which the associated taxa were clustered based on 500 bootstraps using MEGA v 5.2.2 [27]. Genome sequences are not currently available for any
of the type strains included in this figure

Fig. 2 Phylogenetic tree of H. meridiana strain R1t3 and other Halomonas spp. associated with corals. Sequences from the 16S rRNA gene were
aligned with MUSCLE and trimmed to 691 bp, the length of the shortest sequence. Evolutionary history was inferred using the Maximum
Likelihood method based on the Tamura-Nei model [26]. Branch lengths are measured in the number of substitutions per site. Branch labels
indicate the percentage of trees in which the associated taxa were clustered based on 500 bootstraps using MEGA v 5.2.2 [27]. Genome
sequences are currently available for H. meridiana strain R1t3 and Endozoicomonas montiporae strain LMG 24815
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from the Florida Keys National Marine Sanctuary (Table 1).
A. palmata historically dominated shallow Caribbean reefs,
but is currently listed as Critically Endangered on the IUCN
Red List of Threatened Species due to extensive losses from
white-band disease, climate change, and human-related im-
pacts [14].

Genome sequencing information
Genome project history
H. meridiana strain R1t3 was chosen for genome se-
quencing as a representative of the stable, commensal
bacterial community inhabiting the dynamic surface

mucus layer of an acroporid coral. The genome project
information is available through the Genomes On Line
Database [15] and the annotated genome sequences are
publicly available through both the Integrated Microbial
Genomes (IMG) portal [16] and GenBank (Table 2).

Growth conditions and genomic DNA preparation
A culture of Halomonas meridiana R1t3 (National Center
for Marine Algae & Microbiota, Bigelow Laboratory for
Ocean Sciences, Accession # NCMA B79) was grown
from a single colony at room temperature in 5 ml of
Difco™ Marine Broth 2216 for 48 h. Cells were separated
from the culture medium using microcentrifugation
(12,000 rpm for 5 min) and genomic DNA (gDNA) was
extracted from the pelleted cells with a Qiagen AllPrep
DNA/RNA Micro Kit (Germantown, MD). The quality of
the extracted gDNA was assessed by visualization on a
1 % agarose gel stained with ethidium bromide and with a
BioAnalyzer DNA chip, then sent to the University of
Maryland Institute for Bioscience and Biotechnology
Research for library preparation and sequencing.

Genome sequencing and assembly
A genomic library was prepared with a TruSeq DNA
Sample Preparation Kit (Illumina, San Diego, CA) and
sequenced on an Illumina HiSeq with the high-
output, 100-bp paired-end protocol at the University
of Maryland Institute for Bioscience and Biotechnology
Research. The average insert size was 337 bp with a
DNA concentration of 192 nM. Sequencing reads were
quality-filtered by trimming adaptors with cutadapt
[17] and filtering reads for a minimum quality score of
30, minimum length of 100 bp, and discarding all se-
quences with ambiguous base calls using Sickle [18].
The unassembled, quality-filtered reads (41,481,885
read pairs) are publicly available through the NCBI
Sequence Read Archive (SRA) under the accession
number SRX800904. Quality-filtered reads were inter-
laced with the shuffleSequences_fastq.pl script from
velvet [19] and assembled with IDBA-UD [20] with k-mer
sizes of 60, 70, and 80. This assembly yielded 290 contigs
greater than 150 bp, a maximum contig length of
173,110 bp, and a total assembly length of 3.5 Mbp. The
estimated Illumina sequencing coverage is 23×. To evalu-
ate the quality of the assembly, unassembled reads were
mapped to the 290 assembled contigs with bowtie2 [21]
and alignment statistics were recovered with samtools
[22]. The overall alignment rate was 99.9 %. The coverage
of the genome was further assessed from the unassembled
reads using nonpareil [23], which gave an estimated cover-
age of 100 %, indicating the sequencing effort was more
than sufficient to capture all of the genome (4.2 Gbp
actual effort, compared to 150 Mbp estimated re-
quired effort). Whole genome alignment of the draft

Table 1 Classification and general features of Halomonas
meridiana strain R1t3 [28]

MIGS ID Property Term Evidence
codea

Classification Domain Bacteria TAS [29]

Phylum Proteobacteria TAS [30]

Class Gammaproteobacteria TAS [31]

Order Oceanospirillales TAS [32]

Family Halomonadaceae TAS [33]

Genus Halomonas TAS [34]

Species Halomonas
meridiana

TAS [1]

strain: R1t3

Gram stain Negative NAS

Cell shape Rod-shaped IDA

Motility Motile IDA

Sporulation Non-sporulating NAS

Temperature range 20–37 °C IDA

Optimum temperature 30 °C IDA

pH range; Optimum 7–9; 8 IDA

Carbon source Varied TAS [12]

MIGS-6 Habitat Coral, Marine host TAS [3]

MIGS-6.3 Salinity 2–10 % NaCl (w/v) IDA

MIGS-22 Oxygen requirement Aerobic TAS [3]

MIGS-15 Biotic relationship Host-associated TAS [3]

MIGS-14 Pathogenicity Non-pathogen NAS

MIGS-4 Geographic location Looe Key Reef, Florida TAS [3]

MIGS-5 Sample collection April 2005 TAS [3]

MIGS-4.1 Latitude 24° 40′ 48″ N TAS [3]

MIGS-4.2 Longitude 81° 14′ 24″ W TAS [3]

MIGS-4.3 Depth ~5 m TAS [3]

MIGS-4.4 Altitude Not applicable
aEvidence codes - IDA Inferred from Direct Assay, TAS Traceable Author
Statement (i.e., a direct report exists in the literature), NAS Non-traceable
Author Statement (i.e., not directly observed for the living, isolated sample,
but based on a generally accepted property for the species, or anecdotal
evidence). These evidence codes are from the Gene Ontology project [35]
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genome sequences of Halomonas strain R1t3 and
Endozoicomonas montiporae strain LMG 24815 was
performed with Mauve v2.4 [24].

Genome annotation
The draft genome assembly was submitted to IMG-ER
[16] for annotation (Taxon ID 2588254266, publicly
available) and discussion of genome content here is
restricted to the IMG annotation. The 130 contigs
greater than 500 bp were also submitted to GenBank

(JZEM00000000) and annotated through the NCBI
Prokaryotic Genome Annotation Pipeline. Locus tags in
IMG are prefaced by “Halo” while locus tags in GenBank
are prefaced by “VE30”.

Genome properties
The draft genome of strain R1t3 is comprised of 290
scaffolds, with a total length of 3.5 Mbp (Table 3). Com-
pared to the other 28 genomes of Halomonas currently
in the IMG database (as of April 2015), which range
from 2.8 Mbp to 5.9 Mbp, the genome of strain R1t3 is
smaller than the average Halomonas genome size of

Table 2 Genome sequencing project information

MIGS ID Property Term

MIGS 31 Finishing quality Draft

MIGS-28 Libraries used Illumina DNA-seq,
PE library (~350 bp insert size)

MIGS 29 Sequencing platforms Illumina HiSeq

MIGS
31.2

Fold coverage 23X

MIGS 30 Assemblers IDBA-UD 1.1.0

MIGS 32 Gene calling method IMG: DOE-JGI Genome Annotation
Pipeline, NCBI Prokaryotic Genome
Annotation Pipeline

Locus Tag IMG: Halo, NCBI: VE30

Genbank ID JZEM00000000

GenBank Date of
Release

04 March 2015

GOLD ID Gp0103707

BIOPROJECT PRJNA269585

MIGS 13 Source Material
Identifier

NCMA B79

Project relevance Host-associated

Fig. 3 Transmission Electron Micrograph of typical Halomonas meridiana strain R1t3 cells. TEM micrograph of strain R1t3 cells grown in marine
broth for 18 h and prepared for microscopy with a negative stain. TEM was performed on a Tecnai G2 Spirit 120 kV Transmission Electron
Microscope at the University of Florida Electron Microscopy Core. Panel a shows a single cell, panel b shows multiple cells

Table 3 Genome statistics based on the IMG Annotation Pipeline

Attribute Value % of Total

Genome size (bp) 3,507,875 100.00

DNA coding (bp) 3,136,266 89.41

DNA G + C (bp) 1,986,943 56.64

DNA scaffolds 290 100.00

Total genes 3526 100.00

Protein coding genes 3397 96.34

RNA genes 129 3.66

Pseudo genes 0 0.00

Genes in internal clusters 2549 72.29

Genes with function prediction 2887 81.88

Genes assigned to COGs 2469 70.02

Genes with Pfam domains 2945 83.52

Genes with signal peptides 259 7.35

Genes with transmembrane helices 811 23.00

CRISPR repeats 0 0
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4.3 Mbp. The G + C content is 57 %, while the other
Halomonas genomes contain 52 to 68 % G + C. A
total of 3526 genes were annotated through the IMG
pipeline, with approximately 70 % genes assigned to
Clusters of Orthologous Genes (Table 4). No pseudo-
genes or CRISPR repeats were detected.

Insights from the genome sequence
Like other members of the Halomonadaceae, strain R1t3
exhibits tolerance to a wide range of salinities that is likely
mediated through the production of osmoprotectants,
such as glycine betaine. Strain R1t3 has homologues of
the two genes needed to produce glycine betaine. These
genes, choline dehydrogenase (Halo_00078/VE30_01315)
and betaine aldehyde dehydrogenase (Halo_00077/
VE30_01310) are part of a operon and are preceded by a
choline ABC transporter periplasmic binding protein
(Halo_00075/VE30_01300) and a TetR-family transcrip-
tional regulator (Halo_00076/VE30_01305). The genome

of strain R1t3 also contains a biosynthetic cluster (ectABC)
for the production of the cyclic amino acid osmolyte,
ectoine (Halo_01324/01325/01326, VE30_07080/07085/
07090) as well as ectoine utilization genes eutED
(Halo_01398/01399, VE30_04620/04625).
The genome of strain R1t3 reflects its ability to

utilize a wide range of carbon sources, including gene
homologues for six different glycoside hydrolases (GH),
used for breaking down complex carbohydrates. Four
belong to GH family 13 (Halo_01730/VE30_08480,
Halo_01736/VE30_08510, Halo_02655/VE30_13740,
Halo_02891/VE30_RS10055), used for the breakdown of
starch and glycogen. Single genes encode for GH family 3
(Halo_00185/VE30_02710) and GH32 (Halo_01720/
VE30_08435) glycosidases, which act on oligosaccha-
rides and fructan, respectively. The genome of strain
R1t3 also contains homologues of genes required for
glycerol transport across the membrane (glpSTPQV)
(Halo_00080/00081/00082/00083/00085. VE30_01325/
01330/01335/01340/01350) and glycerol degradation
(glpAD) (Halo_00086/VE30_01355). The efficient use
of multiple sources of carbon may be mediated
through the widely conserved csrA carbon storage
regulator (Halo_02194/VE30_11745) that is present in
the genome.
Previous work examining the utilization of coral mucus

as a carbon source in this strain demonstrated that glu-
cose and galactose are preferred carbon sources for strain
R1t3 [25]. The addition of glucose to media containing
high-molecular-weight components of coral mucus
repressed the enzymatic activity of α-D-fucopyranosidase
and the addition of galactose repressed α-L-
galactopyranosidase activity. This catabolite repression
is likely effected through the tctE/D two-component sys-
tem (Halo_03014/VE30_14870, Halo_03015/VE30_14875)
and tctCBA tricarboxylate transport membrane pro-
tein (Halo_03016/03017/03018, VE30_14880/14885/
14890) encoded in the genome.
Overall, the average nucleotide identity (ANI) between

the IMG annotated draft genomes of H. meridiana
strain R1t3 (3.5 Mbp) and Endozoicomonas montiporae
LMG 24815 (5.6 Mbp) was 68.64 %. Orthologs shared
between the two genomes were identified using a mini-
mum of 60 % sequence identity and 70 % coverage. Des-
pite the similarity of the ecological niches filled by these
two Oceanospirillales bacteria, only 11 % of the genes in
Halomonas strain R1t3 (392 genes) have orthologs in the
Endozoicomonas genome. Reducing the threshold to
30 % sequence similarity only increased the total propor-
tion of orthologs to roughly 12.5 % (442 genes). Of the
orthologs with at least 30 % sequence identity, three of
the four starch/glycogen-degrading glycoside hydrolases
and the single oligosaccharide-degrading GH in Halomo-
nas had orthologs in Endozoicomonas.

Table 4 Number of genes associated with general COG
functional categories, based on the IMG Annotation Pipeline

Code Value % age Description

J 207 7.53 Translation, ribosomal structure and biogenesis

A 1 0.04 RNA processing and modification

K 179 6.51 Transcription

L 115 4.18 Replication, recombination and repair

B 2 0.07 Chromatin structure and dynamics

D 32 1.16 Cell cycle control, Cell division, chromosome
partitioning

V 63 2.29 Defense mechanisms

T 132 4.80 Signal transduction mechanisms

M 171 6.22 Cell wall/membrane biogenesis

N 71 2.58 Cell motility

U 36 1.31 Intracellular trafficking and secretion

O 128 4.65 Posttranslational modification, protein turnover,
chaperones

C 195 7.09 Energy production and conversion

G 149 5.42 Carbohydrate transport and metabolism

E 253 9.20 Amino acid transport and metabolism

F 72 2.62 Nucleotide transport and metabolism

H 155 5.64 Coenzyme transport and metabolism

I 136 4.95 Lipid transport and metabolism

P 176 6.40 Inorganic ion transport and metabolism

Q 64 2.33 Secondary metabolites biosynthesis, transport
and catabolism

R 202 7.35 General function prediction only

S 147 5.35 Function unknown

- 1057 29.98 Not in COGs

The total is based on the total number of protein coding genes in the genome
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Conclusions
The draft genome sequence of Halomonas meridiana
strain R1t3 provides insight for the role of a representative
strain of the commensal bacterial community associated
with the surface mucus layer of an Acropora coral. Strain
R1t3 can utilize a wide range of carbon sources, as dem-
onstrated in culture and supported by genome content.

Additional file

Additional file 1: Table S1. Utilization of carbon sources by Halomonas
species. Description of data: Comparison of the utilization of carbon sources
between Halomonas meridiana R1t3 and the type strains of H. meridiana
and H. aquamarina. (PDF 85 kb)
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