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Abstract

Actinobacillus equuli subsp. equuli is a member of the family Pasteurellaceae that is a common resident of the oral cavity
and alimentary tract of healthy horses. At the same time, it can also cause a fatal septicemia in foals, commonly known
as sleepy foal disease or joint ill disease. In addition, A. equuli subsp. equuli has recently been reported to act as a
primary pathogen in breeding sows and piglets. To better understand how A. equuli subsp. equuli can cause disease,
the genome of the type strain of A. equuli subsp. equuli, ATCC 19392T, was sequenced using the PacBio RSII sequencing
system. Its genome is comprised of 2,431,533 bp and is predicted to encode 2,264 proteins and 82 RNAs.
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Introduction
Actinobacillus equuli subsp. equuli, previously known as
‘Bacillus viscosum-equi’, or ‘Shigella equirulis’, is a com-
mon resident of the oral flora of healthy horses, as well
as that of the alimentary and genital tracts [1,2]. It has
also been reported to be present in other host species
such as mice, seemingly without ill effect [3] and on rare
occasions, has been transmitted through bite wounds to
humans [4]. A. equuli subsp. equuli is the etiological
agent of sleepy foal disease, an acute form of fatal septi-
cemia in neonatal foals that may progress to a chronic
form, joint ill disease, producing lesions in the kidneys,
joints, and lungs [5-8]. Horses with A. equuli infection
can present with arthritis, bronchitis, pneumonia, pleuri-
tis, peritonitis, sepsis, endocarditis, pericarditis, nephritis,
meningitis, metritis, and abortion [7,9-12]. A. equuli
subsp. equuli was previously proposed to act as a second-
ary pathogen in foals; however, a recent study by Layman
and colleagues [13] has revealed that A. equuli subsp.
equuli has the potential to act as a primary pathogen given
favourable conditions. Recently, it has been reported to
also be a primary pathogen in sows and piglets [14,15].
The hemolytic counterpart of this bacterium, A. equuli

subsp. haemolyticus, is isolated more frequently from
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the respiratory tract rather than the oral cavity. It can
also cause septicemia and sequelae such as arthritis and
meningitis, respiratory tract infections, and mare repro-
ductive loss syndrome [8,10,16].
The similar colonial morphology and biochemical

markers and shared 16S rRNA sequences make differenti-
ation of A. equuli from Actinobacillus suis difficult [8]. In
addition, little is known about the virulence factors of A.
equuli subsp. equuli. To be better able to identify and to im-
prove our understanding of the mechanism of pathogen-
host interactions [7], the genome of the type strain A. equuli
subsp. equuli strain ATCC 19392T was sequenced. This
strain was isolated from foal blood and deposited in
the American Type Culture Collection by the Equine
Research Station (New Market, UK) in 1953 [17].
Organism information
Classification and features
As a member of the genus Actinobacillus, A. equuli
subsp. equuli belongs to the family Pasteurellaceae, class
Gammaproteobacteria [18] (Table 1). Phylogenetic ana-
lysis using 16S rRNA sequences suggests that A. equuli
subsp. equuli is most closely related to A. suis and A.
hominis (Figure 1).
A. equuli subsp. equuli is a small, Gram-negative, non-

motile, pleomorphic bacterium [15,16,19] (Figure 2). It is
NAD-independent, nonhemolytic, and CAMP negative
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Table 1 Classification and features of A. equuli subsp. equuli ATCC 19392T

MIGS ID Property Term Evidence codea

Classification Domain Bacteria TAS [21]

Phylum Proteobacteria TAS [22]

Class Gammaproteobacteria TAS [23,24]

Order Pasteurellales TAS [25]

Family Pasteurellaceae TAS [26,27]

Genus Actinobacillus TAS [28,29]

Species Actinobacillus equuli TAS [28,30,31]

Subspecies Actinobacillus equuli subsp. equuli TAS [20]

Type strain ATCC 19392T

Gram stain Negative TAS [32]

Cell shape Rods (pleomorphic) TAS [33]

Motility Non-motile TAS [33]

Sporulation Non-sporulating TAS [33]

Temperature range Mesophile (20 - 44°C) TAS [33]

Optimum temperature 37°C TAS [20]

pH range 6.0 – 8.4 TAS [1]

Carbon source Saccharolytic TAS [19]

MIGS-6 Habitat Host, equine or swine upper respiratory tract, alimentary tract, and genital tract TAS [4,5,19]

MIGS-6.3 Salinity 0.5% NaCl NAS

MIGS-22 Oxygen requirement Facultative anaerobe TAS [19,33]

MIGS-15 Biotic relationship Commensal or opportunistic TAS [14,15]

MIGS-14 Pathogenicity Variable TAS [13]

MIGS-4 Geographic location New Market, UK TAS [17]

MIGS-5 Sample collection 1953 TAS [17]

MIGS-4.1 MIGS-4.2 Latitude Not reported

Longitude Not reported

MIGS-4.4 Altitude Not reported
aEvidence codes - TAS: Traceable Author Statement; NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on
a generally accepted property for the species, or anecdotal evidence). These evidence codes are from the Gene Ontology project [34].
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[15,20]. A. equuli subsp. equuli produces large amounts
of extracellular slime that imparts sticky properties in
solid and liquid media cultures [19,31]. On nutrient or
blood agar, smooth, grayish-white, circular colonies are
produced with an average diameter of 1-2 mm after
Figure 1 Phylogenetic tree based on 16S rRNA sequences of Actinobacillus
A. equuli subsp. equuli is indicated in bold. The RDP aligner, which applies t
RDP Tree Builder, which implements the Weighbor algorithm [36] for tree c
process in which the values to the left of the branches illustrate the freque
growth for 24 h [35] (Figure 3). On initial culture from
clinical material, colonies are viscous and usually rough
but become smooth in successive subcultures [1,19].
Growth using liquid culturing methods has been re-
ported to increase viability in comparison to solid media
sensu stricto species plus A. capsulatus and H. parasuis as outgroups.
he Jukes-Cantor corrected distance model to align sequences, and the
onstruction were used. Tree building also involved a bootstrapping
ncy of occurrence of a branch in 100 replicates [37].
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Figure 2 Gram stain of A. equuli subsp. equuli ATCC 19392T at 1000 X magnification.
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cultures, and viscosity is retained upon repeated subcul-
turing [1,19]. The usual temperature range for growth of
this bacterium is 20-39°C, with an optimum at 37°C,
though some A. equuli subsp. equuli strains have been
shown to grow at temperatures as high as 44°C [33].
Acid but not gas is produced from sucrose, mannitol,
galactose, lactose, maltose, mannose, melibiose, trehal-
ose, raffinose, and glycerol fermentation [19,20,33]. A.
equuli subsp. equuli is capable of reducing nitrate and
produces α-galactosidase, α-glucosidase, β-xylosidase, ure-
ase, and oxidase [19,20,33].
Figure 3 A. equuli subsp. equuli ATCC 19392T colonies on sheep blood aga
Genome sequencing information
Genome project history
A. equuli subsp. equuli was selected for sequencing be-
cause of its importance to the horse industry as the etio-
logic agent of sleepy foal disease and joint ill disease [7].
Sequencing was done at the McGill University and
Génome Québec Innovation Centre (Montréal, QC,
Canada) using the PacBio RS II DNA Sequencing
System, and assembled using PacBio RS II software and
Celera Assembler. A. equuli subsp. equuli was annota-
ted using the NCBI Prokaryotic Genome Annotation
r.
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Pipeline. A summary of the project information and the
Minimum Information about a Genomic Sequence is
shown in Table 2 [38].
Growth conditions and genomic DNA preparation
A. equuli subsp. equuli was grown from a frozen (-70°C)
seed stock on sheep blood agar plates overnight in an
atmosphere of 5% CO2 at 37°C. After subculture, well-
isolated colonies were used for genomic DNA isolation.
Cells were lysed using modified B1 (150 mM Tris · Cl,
50 mM EDTA, 0.5% Tween®-20, 0.5% Triton X-100,
pH 8.0) and B2 (750 mM NaCl, 50 mM MOPS, 15% iso-
propanol, 0.15% Triton X-100, pH 7.0) buffers. DNA
was then column purified using a QIAGEN Plasmid
Midi Kit (Qiagen, Germany) following manufacturer's
protocol for binding and elution. The resultant DNA
preparation was characterized using a NanoDrop model
ND1000 Spectrophotometer and was diluted to a con-
centration of ~0.47 mg/μl.
Table 3 Genome statistics

Attribute Value % of totala

Genome size (bp) 2,431,533 100.00

DNA coding (bp) 2,169,474 89.22
Genome sequencing and assembly
Single Molecule, Real-Time DNA sequencing (Pacific
Biosciences) [39] was done to obtain the genome sequence
of the A. equuli subsp. equuli ATCC 19392T. A total of
133,616 raw subreads were generated with an average
length of 4,348 bp using two SMRT Cells in a PacBio RSII
sequencer. The resultant subread length cutoff value, 29.42,
was used in the Basic Local Alignment with Successive
Refinement step [40] where short reads were used to cor-
rect for errors on long reads [39]. The corrected reads were
assembled into contigs according to the Hierarchical
Genome Assembly Process (HGAP) workflow using the
Celera Assembler and refined using BLASR to align raw
Table 2 Project information and its association with MIGS
version 2.0 compliance [38]

MIGS ID Property Term

MIGS-31 Finishing quality Complete

MIGS-28 Libraries used SMRTbell library

MIGS-29 Sequencing platforms PacBio RS II

MIGS-31.2 Fold coverage 196x

MIGS-30 Assemblers PacBio RS II, Celera

MIGS-32 Gene calling method GeneMarkS+

Locus Tag ACEE

Genbank ID CP007715

GenBank Date of Release December 15, 2014

GOLD ID Gp0095186

BIOPROJECT PRJNA247050

MIGS-13 Source Material Identifier ATCC 19392T

Project relevance Equine and swine pathogenesis
reads on contigs [39]. Final processing was conducted using
Quiver, a variant calling algorithm, to generate high quality
consensus sequences [39]. There were a total of 4,777 cor-
rected reads with an average length of 7,804 bp and a final
product of one contig.

Genome annotation
Genes were identified using the NCBI Prokaryotic
Genome Annotation Pipeline. The prediction software,
GeneMark, is integrated into the pipeline and performs
unsupervised gene finding using heuristic Markov
Models [41]. Additional gene prediction analysis and
functional annotation was performed within the Inte-
grated Microbial Genomes (IMG) platform [42] devel-
oped by the Joint Genome Institute [43] (Table 3).

Genome properties
The genome of A. equuli subsp. equuli is a single circular
chromosome that is 2,431,533 bp in length with a G + C
content of approximately 40.3%. It is predicted to contain
2,264 genes, of which 2,182 code for proteins and 82
for RNA; 11 pseudogenes are also present (Table 3 and
Figure 3). Approximately 3/4 of the predicted genes can
be assigned to one of 25 functional COG categories
(Table 4). Of particular note with regard to virulence
are several lipopolysaccharide genes predicted to
encode biosynthetic enzymes for the O-antigen and
lipid A components. Adhesins of different types were
DNA G + C (bp) 979,048 40.26

DNA scaffolds 1 100.00

Total genesb 2,264 100.00

Protein coding genes 2,182 96.38

RNA genes 82 3.62

Pseudo genesc 11 0.49

Genes in internal clusters 1,466 64.75

Genes with function prediction 1,993 88.03

Genes assigned to COGs 1,752 77.39

Genes with Pfam domains 1,964 86.75

Genes with signal peptides 235 10.38

Genes with transmembrane helices 508 22.44

CRISPR repeats 2 0.08
aThe total is based on either the size of the genome in base pairs or the total
number of protein coding genes in the annotated genome.
bAlso includes 11 pseudogenes and one other RNA gene that does not belong
to rRNA or tRNA categories.
cPseudogenes are not additive under total genes and may be counted as
either protein coding or RNA genes.
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Table 4 Number of genes associated with general COG
functional categories

Code Value % age Description

J 159 8.49 Translation

A 1 0.05 RNA processing and modification

K 94 5.02 Transcription

L 105 5.61 Replication, recombination and repair

B - - Chromatin structure and dynamics

D 24 1.28 Cell cycle control, mitosis and meiosis

Y - - Nuclear structure

V 18 0.96 Defense mechanisms

T 35 1.87 Signal transduction mechanisms

M 136 7.26 Cell wall/membrane biogenesis

N 4 0.21 Cell motility

Z - - Cytoskeleton

W 2 0.11 Extracellular structures

U 44 2.35 Intracellular trafficking and secretion

O 92 4.91 Posttranslational modification, protein
turnover, chaperones

C 117 6.25 Energy production and conversion

G 126 6.73 Carbohydrate transport and metabolism

E 176 9.40 Amino acid transport and metabolism

F 63 3.36 Nucleotide transport and metabolism

H 108 5.77 Coenzyme transport and metabolism

I 45 2.40 Lipid transport and metabolism

P 133 7.10 Inorganic ion transport and metabolism

Q 14 0.75 Secondary metabolites biosynthesis,
transport and catabolism

R 194 10.36 General function prediction only

S 183 9.77 Function unknown

- 512 22.61 Not in COGs
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observed including several autotransporters; a tight ad-
herence locus; prepilins, and fimbriae; a filamentous
hemagglutinin homolog was also detected. In addition,
several putative iron acquisition systems are present in-
cluding those for siderophores, hemoglobin and transfer-
rin. A number of toxin and hemolysin genes were also
identified including an aqxCABD operon, although com-
pared to the aqxCABD of A. equuli subsp. haemolyticus
there are many point mutations and sizable deletions at
both ends of the aqxA gene. Other regions of particular
interest include an integron and Mu-like phage, identified
using PHAST [44].
Insights from the genome sequence
Given the marked similarities of A. equuli and A. suis
there has been some debate as to whether these organ-
isms should be a single species. In the current study we
determined that the A. equuli subsp. equuli 16S genes
are 99% identical to those of both A. suis H91-0380 and
the A. suis type strain, ATCC 33415, consistent with
membership in the same species. Further, as can be seen
in the circular maps below, the genome of A. equuli
subsp. equuli is very similar to that of A. suis again sug-
gesting that A. equuli subsp. equuli and A. suis might be
the same species (Figure 4). On the other hand, when
genomes of A. suis H91-0380 and A. suis ATCC 33415
were compared with that of A. equuli subsp. equuli
using the ANI calculator [45], the ANI value of both
comparisons was 93.82%, which is lower than 95%, the
recommended cutoff value for delineating species [46].
In-silico DNA-DNA hybridization, done using a Genome

Blast Distance Phylogeny approach to generate genome
based distance measures for phylogenetic inferences, also
demonstrated differences between A. equuli and A. suis. The
Genome-to-Genome Distance Calculator [47] revealed a dis-
tance of 0.0685 between A. suis H91-0380 and A. equuli
subsp. equuli, with a DDH estimate of 51.40% +/- 2.66. A
DDH similarity below 70% is interpreted as two species
being distinct; 79% is used to discriminate between sub-
species [48]. The DDH estimate exceeding the 70% species
threshold was determined from logistic regression to be
23.14%. In terms of subspecies relatedness, the probability
of exceeding the 79% threshold was 4.82% between A.
equuli subsp. equuli and A. suis H91-0380. The distance
calculated between A. suis ATCC 33415 and A. equuli
subsp. equuli and their DDH estimate was 0.0681 and
51.60% +/- 2.66, respectively. The probability that DDH
exceeded 70% and 79% for A. suis ATCC 33415 and A.
equuli subsp. equuli were 23.66% and 4.94%, respectively.
Taken together, these analyses are consistent with the

notion that A. suis and A. equuli subsp. equuli are re-
lated but distinct species, and care is needed to correctly
identify them.

Conclusions
A. equuli subsp. equuli can induce fatal septicemia in
foals resulting in significant economic losses in the
equine industry; as well, A. equuli subsp. equuli has re-
cently been reported to cause septicemia in swine of all
ages. Our analysis of the A. equuli subsp. equuli genome
indicates that A. suis and A. equuli subsp. equuli are
closely related yet distinct species. At the present time
little is known about how A. equuli subsp. equuli causes
disease or the factors that control species and tissue
tropism. More research including biological experiments
is required to better understand the pathogenesis of A.
equuli and it is hoped this reported genome sequence of
A. equuli subsp. equuli ATCC 19392T will provide vital
information for such studies. In addition, pathway
analysis and genome studies may help improve our un-
derstanding of host-pathogen interactions of A. equuli
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Figure 4 Circular map of the A. equuli subsp. equuli ATCC 19392T genome generated using the CGView Server [49]. From the outside to the
center: coding sequences (CDSs) in positive strand, reverse strand CDSs, BLASTN versus A. suis strain H91-0380 (CP003875), BLASTN versus A. suis
ATCC 33415 (CP009159), GC content, and GC skew.
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subsp. equuli and other Actinobacillus species and aid in
the design of diagnostic tools and antimicrobial agents.
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