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Desulfotomaculum kuznetsovii is a moderately thermophilic member of the polyphyletic 
spore-forming genus Desulfotomaculum in the family Peptococcaceae. This species is of in-
terest because it originates from deep subsurface thermal mineral water at a depth of about 
3,000 m. D. kuznetsovii is a rather versatile bacterium as it can grow with a large variety of 
organic substrates, including short-chain and long-chain fatty acids, which are degraded 
completely to carbon dioxide coupled to the reduction of sulfate. It can grow 
methylotrophically with methanol and sulfate and autotrophically with H2 + CO2 and sulfate. 
For growth it does not require any vitamins. Here, we describe the features of D. kuznetsovii 
together with the genome sequence and annotation. The chromosome has 3,601,386 bp or-
ganized in one contig. A total of 3,567 candidate protein-encoding genes and 58 RNA genes 
were identified. Genes of the acetyl-CoA pathway, possibly involved in heterotrophic growth 
with acetate and methanol, and in CO2 fixation during autotrophic growth are present. Ge-
nomic comparison revealed that D. kuznetsovii shows a high similarity with Pelotomaculum 
thermopropionicum. Genes involved in propionate metabolism of these two strains show a 
strong similarity. However, main differences are found in genes involved in the electron ac-
ceptor metabolism. 

Introduction 
Desulfotomaculum kuznetsovii strain 17T (VKM B-
1805; DSM 6115) is a moderately thermophilic 
sulfate-reducing bacterium isolated from deep 
subsurface thermal mineral water [1]. It grows 
with a wide range of substrates, including organic 
acids, such as long-chain fatty acids, short-chain 
fatty acids (butyrate, propionate, acetate), lactate, 

pyruvate, fumarate and succinate as well as etha-
nol and methanol. These substrates are degraded 
to CO2 coupled to sulfate reduction. The strain is 
also able to grow autotrophically with H2/CO2 and 
sulfate and to ferment pyruvate and fumarate. For 
growth, D. kuznetsovii has no vitamin require-
ment. 
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Desulfotomaculum is a genus of Gram-positive, 
spore-forming anaerobes that is phylogenetically 
and physiologically very diverse. The genus is 
poorly studied physiologically, while its members 
are known to play an important role in the carbon 
and sulfur cycle in a variety of often adverse envi-
ronments. The genus is divided phylogenetically 
into different sub-groups [2,3]. To get a thorough 
understanding of the evolutionary relationship of 
the different Desulfotomaculum sub-groups and 
the physiology of the individual species, it is im-
portant to have genome sequence information. 
Here, we present a summary of the features of D. 
kuznetsovii strain 17T, together with the descrip-
tion of the complete genomic sequencing and an-
notation. Moreover, we describe a physiological 
and genomic comparison of D. kuznetsovii strain 
17T and Pelotomaculum thermopropionicum strain 
SIT, because phylogenetically P. 
thermopropionicum is the closest related organism 
with validly published name that has a completely 
sequenced genome. However, the two strains have 
different physiological traits. For example, P. 
thermopropionicum is not able to grow by sulfate 
reduction, but is able to grow in syntrophy with 
methanogens. D. kuznetsovii lacks this ability. By 
comparing the genomes of the two bacteria we 
were able to identify the main similarities and dif-
ferences. 

Classification and features 
D. kuznetsovii is a member of the phylum 
Firmicutes. Phylogenetic analysis of the 16S rRNA 
genes of D. kuznetsovii shows that it clusters in 
Desulfotomaculum cluster 1. This cluster not only 
contains Desulfotomaculum species, but also 
members of the genera Sporotomaculum, 
Cryptanaerobacter and Pelotomaculum. D. 
kuznetsovii is part of sub-group 1c together with 
D. solfataricum, D. luciae, D. thermosubterraneum, 
D. salinum, D. australicum, and D. 
thermocisternum, while Pelotomaculum species 
belong to sub-group 1h (Figure 1) [2]. 
D. kuznetsovii cells are rod-shaped (1.0-1.4 x 3.5-5 
μm) with rounded ends and peritrichous flagella 
[Figure 2]. Spores of D. kuznetsovii are spherical 
(1.3 μm in diameter) and centrally located causing 
swelling of the cells. D. kuznetsovii grows between 
50 and 85°C, but the optimal growth temperature 
is 60-65°C. The substrates D. kuznetsovii can grow 
with are completely oxidized to CO2. Suitable elec-
tron acceptors are sulfate, thiosulfate and sulfite. 

D. kuznetsovii is also able to grow by fermentation 
of pyruvate and fumarate. A summary of the clas-
sification and general features of D. kuznetsovii is 
presented in Table 1 [1]. 

Genome sequencing and annotation 
Genome project history 
D. kuznetsovii was selected for sequencing in the 
DOE Joint Genome Institute Community Sequenc-
ing Program 2009, proposal 300132_795700 
'Exploring the genetic and physiological diversity 
of Desulfotomaculum species', because of its phy-
logenetic position in one of the Desulfotomaculum 
sub-groups, its important role in bioremediation, 
and its ability to use propionate, acetate and 
methanol for growth. The genome project is listed 
in the Genome OnLine Database (GOLD) [20] as 
project Gc01781, and the complete genome se-
quence was deposited in Genbank. Sequencing, 
finishing and annotation of the D. kuznetsovii ge-
nome were performed by the DOE Joint Genome 
Institute (JGI). A summary of the project infor-
mation is shown in Table 2. 

Growth conditions and DNA isolation 
D. kuznetsovii was grown anaerobically at 60oC in 
bicarbonate buffered medium with propionate 
and sulfate as substrates [1]. DNA of cell pellets 
was isolated using the standard DOE-JGI CTAB 
method recommended by the DOE Joint Genome 
Institute (JGI, Walnut Creek, CA, USA). In short, 
cells were resuspended in TE (10 mM tris; 1 mM 
EDTA, pH 8.0). Subsequently, cells were lysed us-
ing lysozyme and proteinase K, and DNA was ex-
tracted and purified using CTAB and phe-
nol:chloroform:isoamylalcohol extractions. After 
precipitation in 2-propanol and washing in 70% 
ethanol, the DNA was resuspended in TE contain-
ing RNase. Following a quality and quantity check 
using agarose gel electrophoresis in the presence 
of ethidium bromide, and spectrophotometric 
measurement using a NanoDrop ND-1000 spec-
trophotometer (NanoDrop® Technologies, Wil-
mington, DE, USA). 

Genome sequencing and assembly 
The genome was sequenced using a combination 
of Illumina and 454 sequencing platforms. All 
general aspects of library construction and se-
quencing can be found at the JGI website [21]. 
Pyrosequencing reads were assembled using the 
Newbler assembler (Roche).  
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The initial Newbler assembly consisting of 81 
contigs in five scaffolds was converted into a phrap 
[22] assembly by making fake reads from the con-
sensus, to collect the read pairs in the 454 paired 
end library. Illumina GAii sequencing data (570.2 
Mb) was assembled with Velvet [23] and the con-
sensus sequences were shredded into 1.5 kb over-
lapped fake reads and assembled together with the 
454 data. The 454 draft assembly was based on 
134.6 Mb 454 draft data and all of the 454 paired 
end data. Newbler parameters are -consed -a 50 -l 
350 -g -m -ml 20. The Phred/Phrap/Consed soft-
ware package [22] was used for sequence assembly 
and quality assessment in the subsequent finishing 
process. After the shotgun stage, reads were as-
sembled with parallel phrap (High Performance 
Software, LLC). Possible mis-assemblies were  

corrected with gapResolution [21], Dupfinisher 
[24], or sequencing cloned bridging PCR fragments 
with subcloning. Gaps between contigs were closed 
by editing in Consed, by PCR and by Bubble PCR 
primer walks (J.-F. Chang, unpublished). A total of 
400 additional reactions and one shatter library 
were necessary to close gaps and to raise the quali-
ty of the finished sequence. Illumina reads were 
also used to correct potential base errors and in-
crease consensus quality using a software Polisher 
developed at JGI [25]. The error rate of the com-
pleted genome sequence is less than 1 in 100,000. 
Together, the combination of the Illumina and 454 
sequencing platforms provided 188.8 × coverage of 
the genome. The final assembly contained 323,815 
pyrosequence and 15,594,144 Illumina reads. 

 
Figure 1. Neighbor joining tree based on 16S rRNA sequences showing the phylogenetic 
affiliation of Desulfotomaculum and related species divided in the subgroups of 
Desulfotomaculum cluster 1. D. kuznetsovii is printed in bold type. The sequences of 
different Thermotogales were used as outgroup, but were pruned from the tree. Closed 
circles represent bootstrap values between 75 and 100%. The scale bar represents 10% 
sequences difference. 
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Genome annotation 
Genes were identified using Prodigal [26] as part 
of the Oak Ridge National Laboratory genome an-
notation pipeline, followed by a round of manual 
curation using the JGI GenePRIMP pipeline [27]. 
The predicted CDSs were translated and used to 
search the National Center for Biotechnology In-
formation (NCBI) nonredundant database, 
UniProt, TIGR-Fam, Pfam, PRIAM, KEGG, COG, and 
InterPro databases. Additional gene prediction 
analysis and functional annotation was performed 
within the Integrated Microbial Genomes - Expert 
Review (IMG-ER) platform [28]. 

Genome properties and genome com-
parison with other strains 
The genome of D. kuznetsovii consists of a circular 
chromosome of 3,601,386 bp with 54.88% GC 
content (Table 3 and Figure 3). Pseudogenes com-
prise 4.66% of the genes identified. Of the 3,625 
genes predicted, 3,567 are protein-coding genes of 
which 2,560 are assigned to COG functional cate-
gories. The distribution of these genes into COG 
functional categories is presented in Table 4. 

Table 1. Classification and general features of D. kuznetsovii DSM 6115 according to the MIGS recommendations [4]. 
MIGS ID Property Term Evidence codea 
  Domain Bacteria TAS [5] 
  Phylum Firmicutes TAS [6-8] 
  Class Clostridia TAS [9,10] 
 Current classification Order Clostridiales TAS [11,12] 
  Family Peptococcaceae TAS [11,13] 
  Genus Desulfotomaculum TAS [11,14,15] 
  Species Desulfotomaculum kuznetsovii TAS [1,16] 
  Type strain 17  
 Gram stain Positive TAS [1] 
 Cell shape Rods TAS [1] 
 Motility peritrichous flagella TAS [1] 
 Sporulation oval, terminal or subterminal, slightly swelling the cell. TAS [1] 
 Temperature range 50-85°C TAS [1] 
 Optimum temperature 60-65°C TAS [1] 
 Carbon source CO2 (autotrophic) and organic substrates (heterotrophic) TAS [1] 

 
Energy source 

Sulfate-dependent growth and fermentative growth with 
pyruvate and fumarate. 

TAS [1] 

 Electron acceptor Sulfate, thiosulfate and sulfite. TAS [1] 

MIGS-6 Habitat Geothermal groundwater, sediment and hot solfataric 
fields. 

TAS [1,17,18] 

MIGS-6.3 Salinity 2-3% NaCl TAS [1] 
MIGS-22 Oxygen Obligate anaerobes TAS [1] 
MIGS-15 Biotic relationship Free living TAS [1] 
MIGS-14 Pathogenicity None  
MIGS-4 Geographic location Sukhumi, Georgia TAS [1] 
MIGS-5 Sample collection time 1987 or before TAS [1] 
MIGS-4.1 Latitude 43.009 TAS [1] 
MIGS-4.2 Longitude 40.989 TAS [1] 
MIGS-4.3 Depth 2800-3250 m TAS [1] 

Evidence codes - TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author 
Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the spe-
cies, or anecdotal evidence). Evidence codes are from the Gene Ontology project [19]. 
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Figure 2. Scanning electron microscopic photograph of D. kuznetsovii. 

Table 2. Genome sequencing project information 
MIGS ID Property Term 

MIGS-31 Finishing quality Finished 

MIGS-28 Libraries used 
Four genomic libraries: one Illumina shotgun library, one 
454 standard library, two paired end 454 libraries 

MIGS-29 Sequencing platforms Illumina GAii, 454 Titanium 

MIGS-31.2 Fold coverage 158.2 × illumina; 30.6 × pyrosequencing 

MIGS-30 Assemblers 
VELVET version 0.7.63; Newbler version 2.3; 
 phrap version SPS - 4.24 

MIGS-32 Gene calling method Prodigal 1.4, GenePRIMP 

 INSDC ID CP002770.1 

 Genome Database release July 20, 2012 

 Genbank Date of Release May 24, 2011 

MIGS-13 

GOLD ID 
NCBI project ID 
Source material identifier 

Gc01781 
48313 
DSM 6115T 

 
Project relevance 

Obtain insight into the phylogenetic and physiological  
diversity of Desulfotomacum species, and bioremediation. 
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Table 3. Genome statistics 
Attribute Value % of totala 
Genome size (bp) 3,601,386 100.00 
Genome coding region (bp) 3,057,959 84.91 
Genome G+C content (bp) 1,976,601 54.88 
Total genes 3,625 100.00 
RNA genes 58 1.60 
Protein-coding genes 3,567 98.40 
Genes in paralog clusters 1,373 37.88 
Genes assigned to COGs 2,560 70.62 
Pseudo genes 169 4.66 
Genes with signal peptides 582 16.06 
Genes with transmembrane helices 748 20.63 

 
Figure 3. Graphical map of the chromosome of D. kuznetsovii. From outside to the center: Genes on 
the forward strand (colored by COG categories), Genes on the reverse strand (colored by COG cat-
egories), RNA genes (tRNAs green, rRNAs red, other RNAs black), GC content, GC skew. 
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The genome of D. kuznetsovii has 58 RNA genes of 
which, three are 16S rRNA genes. This is one more 
than the previously described rrnA and rrnB [29]. 
These two rRNA genes contained two large in-
serts. One at the variable 5’terminal region and 
one at the variable 3’terminal region. The main 
differences between the two rRNA genes were 
found in these inserts. These inserts were hypoth-
esized to be involved in the operation of ribo-
somes at high temperatures. However, more re-
search is needed to assess the function of these 
inserts. All three rRNA genes of D. kuznetsovii have 
a size of approximately 1,700 nucleotides. This 
suggests that the third rRNA gene might also con-
tain inserts. Alignment of the 16S rRNA genes con-
firmed the presence of inserts in all three 16S 
rRNA genes (data not shown). 
BLAST analysis [30,31] of the genes of D. 
kuznetsovii against genes in the KEGG Sequence 

Similarity DataBase revealed similarity with other 
Desulfotomaculum strains (Table 5), D. 
acetoxidans, D. carboxydivorans, “D. reducens” and 
D. ruminis, but interestingly also with non-
Desulfotomaculum strains. D. kuznetsovii contains 
873 genes with high similarity to genes of 
Pelotomaculum thermopropionicum, which is more 
than to any of the sequenced Desulfotomaculum 
species. Moreover, we identified the conserved 
proteins of D. kuznetsovii across three related fully 
sequenced species (Table 6). The bidirectional 
best blast hits showed that despite the smaller 
genome of P. thermopropionicum it contained 
more homologous predicted proteins with D. 
kuznetsovii (1,406) compared to D. acetoxidans 
(1,309) and “D. reducens” (1330). This suggests a 
strong physiological similarity between D. 
kuznetsovii and P. thermopropionicum. 

Table 4. Number of genes associated with the general COG functional categories 

Code Value %agea Description 
J 148 5.32 Translation 
A 0 0.00 RNA processing and modification 
K 184 6.61 Transcription 
L 207 7.44 Replication, recombination and repair 
B 2 0.07 Chromatin structure and dynamics 
D 60 2.16 Cell cycle control, mitosis and meiosis 
Y 0 0.00 Nuclear structure 
V 35 1.26 Defense mechanisms 
T 177 6.36 Signal transduction mechanisms 
M 122 4.38 Cell wall/membrane biogenesis 
N 79 2.84 Cell motility 
Z 2 0.07 Cytoskeleton 
W 0 0.00 Extracellular structures 
U 75 2.69 Intracellular trafficking and secretion 
O 81 2.91 Posttranslational modification, protein turnover, chaperones 
C 261 9.38 Energy production and conversion 
G 106 3.81 Carbohydrate transport and metabolism 
E 197 7.08 Amino acid transport and metabolism 
F 55 1.98 Nucleotide transport and metabolism 
H 158 5.68 Coenzyme transport and metabolism 
I 89 3.20 Lipid transport and metabolism 
P 127 4.56 Inorganic ion transport and metabolism 
Q 122 3.58 Secondary metabolites biosynthesis, transport and catabolism 
R 331 11.89 General function prediction only 
S 257 9.23 Function unknown 
- 1,065 29.38 Not in COGs 
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Table 5. Taxonomic distribution of the top KEGG hits of D. kuznetsovii genes based on BLAST 
against KEGG database.† 

Kingdom Category Species Hits 

Archaea   91 

 Crenarchaeota  9 

 Euryarchaeota  81 

 Thaumarchaeota  1 

Bacteria   2,963 

 Acidobacteria  2 

 Actinobacteria  16 

 Alphaproteobacteria  13 

 Bacteroidetes  5 

 Betaproteobacteria  14 

 Cyanobacteria  19 

 Deinococcus-Thermus  16 

 Deltaproteobacteria  62 

 Epsilonproteobacteria  1 

 Firmicutes  2,728 

  Ammonifex degensii 170 

  Carboxydothermus hydrogenoformans 58 

  Desulfotomaculum acetoxidans 310 

  Candidatus Desulforudis audaxviator 154 

  Desulfotomaculum carboxydivorans 268 

  Desulfotomaculum reducens 111 

  Desulfotomaculum ruminis 132 

  Moorella thermoacetica 183 

  Pelotomaculum thermopropionicum 873 

  Thermincola potens JR 104 

 Fusobacteria  2 

 Gammaproteobacteria  12 

 Green nonsulfur bacteria  20 

 Green sulfur bacteria  4 

 Hyperthermophilic bacteria  31 

 Other Proteobacteria  1 

 Spirochaetes  9 

 Synergistetes  6 

 Verrucomicrobia  2 

Eukaryotes   3 

 Plants  1 

 Protists  2 

Null   342 

Total   3,399 

†Species that had more than 50 genes similar to D. kuznetsovii were included in this table, 
others were only summarized in categories. 
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Insights into the genome 
Involvement of the acetyl-coA pathway in 
 growth with acetate and methanol 
D. kuznetsovii oxidizes acetate completely to CO2. 
The pathway of acetate degradation has not been 
studied yet, but sulfate reducers may employ the 
tricarboxylic acid (TCA) cycle or the acetyl-CoA 
pathway for acetate degradation, as exemplified 
by Desulfobacter postgatei and Desulfobacca 
acetoxidans, respectively [32]. Most genes pre-
dicted to code for enzymes of the TCA cycle are 
present in the genome of D. kuznetsovii, but genes 
with similarity to those coding for an ATP-
dependent citrate synthase and isocitrate dehy-
drogenase are missing. This suggests that the TCA 
cycle is not complete and that the TCA cycle en-
zymes have mainly an anabolic function or a func-
tion in other catabolic pathways, such as the pro-
pionate degradation pathway. Genes with similari-
ty to those coding for enzymes involved in the ace-
tyl-CoA pathway are all present in the genome of 
D. kuznetsovii (Figure 4), which suggests its in-
volvement in acetate oxidation. However, there 
are no genes similar to those that code for acetate 
kinase and phosphate acetyltransferase present in 
the genome. The reaction from acetate to acetyl-
CoA is likely performed by acetyl-CoA synthetase 
(Desku_1241). 

D. acetoxidans is an acetate-oxidizing 
Desulfotomaculum species, positioned in sub-
group 1e (Figure 1), that also uses the acetyl-CoA 
pathway for acetate oxidation to CO2 [33]. The 
genes involved in acetate oxidation in D. 
acetoxidans are similar to those in D. kuznetsovii, 
but there are some exceptions. The genome of D. 
acetoxidans does not contain a gene that putative-
ly codes for acetyl-CoA synthetase, similar to D. 
kuznetsovii, but contains genes that putatively 
code for an acetate kinase and a phosphate 
acetyltransferase [34]. Additionally, putative car-
bon-monoxide dehydrogenase complex coding 
genes involved in the acetyl-CoA pathway show 
differences between the two Desulfotomaculum 
species. D. kuznetsovii lacks a ferredoxin coding 
gene that is located between cooC (Desku_1493) 
and acsE (Desku_1487), which in contrast is pre-
sent in the genome of D. acetoxidans (Dtox_1273). 
Moreover, three genes similar to heterodisulfide 
reductase encoding genes (Desku_1486-1484) are 
located upstream of acsE in D. kuznetsovii, which 
is not the case in the genome of D. acetoxidans. 

 

Table 6. Proteins  of D. kuznetsovii conserved across three related species with fully sequenced genomes†. 

Subject DB Input Query D. acetoxidans D. kuznetsovii D. reducens P. thermopropionicum 

D. acetoxidans 4,068 
1,539 1,525 1,486 
1,309 1,316 1,255 

D. kuznetsovii 1,509 
3,398 

1,518 1,645 
1,309 1,330 1,406 

 D. reducens 1,537 1,571 
3,276 

1,438 
1,316 1,330 1,211 

P. thermopropionicum 1,430 1,600 1,395 
2,919 1,255 1,406 1,211 

† BLAST analyses were performed using standard settings and best hits were filtered for 40% identity over 
an alignment length of 75 amino acids as a minimum requirement. The values show the number of pre-
dicted proteins that are homologous to the query species in each row. The number of similar proteins ob-
tained with a unidirectional BLAST is indicated in light blue. Bidirectional best blast hits are indicated in 
dark blue. Proteomes were obtained from ftp.ncbi.nih.gov/Bacteria/. Accession numbers are in parenthe-
sis: Desulfotomaculum acetoxidans (NC_013216); Desulfotomaculum kuznetsovii (NC_015573); 
“Desulfotomaculum reducens” (NC_009253); Pelotomaculum thermopropionicum (NC_009454). 
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Figure 4. Pathway of acetate oxidation to CO2 by D. kuznetsovii. Enzymes in this figure are in bold italic 
and their locus tags are included. Genes with the locus tags Desku_1488 and Desku_1490 putatively 
code for the small subunit and the large subunit of the iron-sulfur protein, respectively. This protein is 
involved in transferring the methyl from acetyl-CoA to tetrahydrofolate. Abbreviations: A-CoA S, acetyl-
CoA synthetase; AcsA, carbon-monoxide dehydrogenase; AcsB, acetyl-CoA synthase; CFeSP, iron-sulfur 
protein; CH3, methyl; THF, tetrahydrofolate; MeTr, methyltransferase. 

Methanol metabolism 
Growth of D. kuznetsovii with methanol and sul-
fate was studied [35]. In that study the activity of 
methyltransferase, an enzyme that is involved in 
methanol metabolism in methanogens and 
acetogens [36,37], could not be assessed, while 
low activities of an alcohol dehydrogenase could 
be measured. An alcohol dehydrogenase with a 
molecular mass of 42 kDa was partially purified 
and showed activity with methanol [35]. The ge-
nome of D. kuznetsovii contains several alcohol 
dehydrogenase genes (Desku_0165, 0619, 0624, 

0628, 2955, 3082) that each code for an enzyme 
with a size of approximately 42 kDa. In the ge-
nome, genes with similarity to those coding for a 
methanol methyltransferase mtaA (Desku_0050, 
0055, 0060), mtaB (Desku_0051) and mtaC 
(Desku_0048, 0049, 0052, 0056) were also found, 
suggesting a methanol metabolism as described in 
Moorella thermoacetica [36]. Further studies are 
needed to obtain information about the diversity 
of the methanol-degradation pathways in D. 
kuznetsovii. 
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Comparison of D. kuznetsovii and P. 
thermopropionicum genomes 
Genomic comparison revealed that a large number 
of D. kuznetsovii genes show similarity to genes of 
Pelotomaculum thermopropionicum, a syntrophic 
propionate-oxidizing thermophile (Table 5 and 6). 
Interestingly, among them are genes that putative-
ly code for enzymes involved in propionate me-
tabolism (Table 7). Moreover, the genetic organi-
zation of the methylmalonyl-CoA (mmc) cluster in 
the genome of both bacteria is similar (Figure 5). 
However, D. kuznetsovii lacks tps, mmcA and 
mmcM in the mmc cluster. mmcA codes for a re-
sponse regulator and mmcM for pyruvate 
ferredoxin oxidoreductase. 

Based on 16S rRNA gene sequences, D. kuznetsovii 
and P. thermopropionicum group in cluster group c 
and h of the Desulfotomaculum cluster 1, respec-
tively (see Figure 1). P. thermopropionicum is 
known for its ability to grow with propionate and 
ethanol in syntrophic association with methano-
gens. It is not able to grow by sulfate respiration, 
despite the presence of sulfate reduction genes in 
the genome [38]. In contrast, D. kuznetsovii is able 
to grow with propionate (Figure 6) and ethanol 
with sulfate. However, in the absence of sulfate, it 
cannot grow in syntrophic association with meth-
anogens. Therefore, differences are expected in 
genes coding for hydrogenases, formate dehydro-
genases, and those involved in sulfate reduction. 

Sulfate reduction genes: Figure 7 depicts the sul-
fate reduction pathway of the two strains. In the 
genome of D. kuznetsovii two genes (Desku_2103; 
Desku_3527) are annotated as phosphoadenosine 
phosphosulfate reductase encoding genes whose 
corresponding proteins might be involved in as-
similatory sulfate metabolism. The P. 
thermopropionicum genome lacks these genes 
[39]. Instead, the P. thermopropionicum genome 
contains an adenylylsulfate kinase gene 
(PTH_0238). In the dissimilatory sulfate reduction 
pathway, the two strains both have genes that 
code for enzymes to reduce sulfate to H2S. Howev-
er, P. thermopropionicum is missing the gene that 
codes for an adenylylsulfate reductase beta subu-
nit, which is present in the D. kuznetsovii genome 
(Desku_1073). Moreover, the gene labeled as a 
dissimilatory sulfite reductase (dsr) alpha and be-
ta subunit in the P. thermopropionicum genome 
(PTH_0242) is not similar to dsrA or dsrB from D. 
kuznetsovii or any other Desulfotomaculum strain. 

However, it has high similarity to the dsrC gene 
from D. kuznetsovii, indicating that it is not a dsrA 
or dsrB gene but a dsrC gene (data not shown). 
Therefore, the inability of P. thermopropionicum to 
grow by sulfate respiration is most likely caused 
by the absence of an adenylylsulfate reductase 
beta subunit encoding gene and the dsrAB genes. 

Hydrogenase and formate dehydrogenase genes: 
Schut and Adams (2009) [40] showed that the 
trimeric [FeFe]-hydrogenase from Thermotoga 
maritima oxidizes NADH and ferredoxin simulta-
neously to produce H2. Similar bifurcating / 
confurcating [FeFe]-hydrogenases and formate 
dehydrogenases are present in Syntrophobacter 
fumaroxidans and P. thermopropionicum [41]. 
Both generate NADH and ferredoxin during propi-
onate degradation via the methylmalonyl-CoA 
pathway and might use confurcating 
hydrogenases and formate dehydrogenases to 
drive the unfavorable re-oxidation of NADH (E0’=-
320mV) by the exergonic re-oxidation of 
ferredoxin (E0’=-398mV) to produce hydrogen 
(E0’= -414mV) or formate (E0’= -432mV) that are 
subsequently transferred to hydrogen and 
formate scavenging methanogens. Additionally, 
up-regulation of genes encoding hydrogenases 
and formate dehydrogenases in P. 
thermopropionicum was shown during syntrophic 
growth [42]. The P. thermopropionicum genome 
contains three [FeFe]-hydrogenases, one [NiFe]-
hydrogenase and two formate dehydrogenases. 
One [FeFe]-hydrogenase (PTH_0668-0670) was 
shown to be down-regulated during syntrophic 
growth, while the other two [FeFe]-hydrogenases 
(PTH_1377-1379 and PTH_2010-2012) were up-
regulated. The two formate dehydrogenases of P. 
thermopropionicum (I, PTH_1711-1714 and II, 
PTH_2645-2649) were both up-regulated during 
syntrophic growth [42]. According to TMHMM 
server v. 2.0 [43] formate dehydrogenase I of P. 
thermopropionicum has transmembrane helices. 
Therefore, it might play an essential role in the 
interspecies transfer of reducing equivalents in 
syntrophic growth. 

The genome of D. kuznetsovii was screened for 
hydrogenase and formate dehydrogenase encod-
ing gene clusters with BLAST analysis. Pfam 
search [44] was used to identify motifs in the ami-
no acid sequences and the TMHMM Server v. 2.0 
[43] was used to screen for transmembrane heli-
ces. The TatP 1.0 Server was used to screen for 
twin-arginine translocation (Tat) motifs in the N-
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terminus to predict protein localization in the cell 
[45]. The incorporation of selenocysteine (SeCys) 
was examined by RNA loop predictions with Mfold 
version 3.2 [46, 47]. The predicted RNA loop in the 

50-100 bp region downstream of the UGA-codon 
was compared with the consensus loop described 
earlier [48]. 

 
Figure 5. Gene organization of the mmc cluster in D. kuznetsovii and P. thermopropionicum. Names of the genes 
can be found in table 6, except for tps, which is a transposase gene. 

 
Figure 6. Propionate degradation pathway in D. kuznetsovii based on genomic data. Enzymes are depicted 
in bold italic. Next to these enzymes are the possible encoding genes, and their locus tags. GCT, 
Glutaconate CoA-transferase; MCD, Methylmalonyl-CoA decarboxylase; PCC, Propionyl-CoA carboxylase; 
MCE, Methylmalonyl-CoA epimerase; MCM, Methylmalonyl-CoA mutase; SCS, Succinyl-CoA synthetase; 
SDH, Succinate dehydrogenase; FHT, Fumarase; MDH, Malate dehydrogenase; OAD, Oxaloacetate decar-
boxylase; PFL, Pyruvate formate lyase. 
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Table 7. Genes in D. kuznetsovii that are annotated as enzymes involved in propionate metabolism†. 

Gene symbol Locus tag Function 
Homologous protein in P. 
thermopropionicum 

   Identity (%) Locus tag 

sdhB Desku_0434 Succinate dehydrogenase, FeS protein 76 
PTH_1018 

sdhA Desku_0435 Succinate dehydrogenase, flavoprotein 76 
PTH_1017 

sdhC Desku_0436 Succinate dehydrogenase, cytochrome b 51 
PTH_1016 

citE Desku_1348 Citrate lyase 57 
PTH_1335 

sdhA Desku_1353 Succinate dehydrogenase, flavoprotein 83 
PTH_1491 

sdhB Desku_1354 Succinate dehydrogenase, FeS protein 75 
PTH_1490 

mmcB Desku_1358 Fumarase, N-terminal domain 73 
PTH_1356 

mmcC Desku_1359 Fumarase, C-terminal domain 77 
PTH_1357 

mmcD2 Desku_1361 Succinyl-CoA synthetase, alpha subunit 78 
PTH_1359 

mmcE Desku_1362 
Methylmalonyl-CoA mutase, 
N-terminal domain 

77 PTH_1361 

mmcF Desku_1363 
Methylmalonyl-CoA mutase, 
C-terminal domain 

82 PTH_1362 

mmcG Desku_1364 Methylmalonyl-CoA epimerase 86 PTH_1363 

mmcH Desku_1365 
Methylmalonyl-CoA decarboxylase, 
alpha subunit 

75 PTH_1364 

mmcI Desku_1366 
Methylmalonyl-CoA decarboxylase, 
epsilon subunit 

82 PTH_1365 

mmcJ Desku_1367 
Methylmalonyl-CoA decarboxylase, 
gamma subunit 

56 PTH_1366 

mmcK Desku_1368 Malate dehydrogenase 75 
PTH_1367 

mmcL Desku_1369 Transcarboxylase 5S subunit 66 
PTH_1368 

pykF Desku_1651 Pyruvate kinase 73 
PTH_2214 

ppsA Desku_2615 Pyruvate phosphate dikinase 78 
PTH_0903 

citE Desku_2747 Citrate lyase 56 
PTH_1335 

†Corresponding homologs in P. thermopropionicum are included. 
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Figure 7. Sulfate reduction pathway of D. kuznetsovii and P. thermopropionicum. Depict-
ed in green are genes that code for sulfate reduction enzymes that are present in the ge-
nome. Dashed arrows indicate the presence of a subunit encoding gene, but not the pres-
ence of all genes required for the enzyme. Dashed dotted arrows are used when no genes 
were found for the reaction. Abbreviations: APS, adenylylsulfate; DP, diphosphate; PAPS, 
3’-Phosphoadenylyl-sulfate (PAPS); redA, reduced acceptor; oxA, oxidized acceptor. 

 
Compared to P. thermopropionicum, D. kuznetsovii 
lacks membrane associated formate dehydrogen-
ases and hydrogenases and also lacks [NiFe]-
hydrogenase. This might explain why D. 
kuznetsovii cannot grow in syntrophic relation 
with methanogens. The genome of D. kuznetsovii 
indicates the presence of a confurcating 
selenocysteine-incorporated formate dehydro-
genase (Desku_2987-2991), two trimeric 
confurcating [FeFe]-hydrogenases (Desku_2307-
2309, Desku_2995-2997) and two [FeFe]-
hydrogenases (Desku_0995, Desku_2934-2935) 
without NADH-binding sites (Figure 8). Several 
subunits of these enzymes are related to subunits 

of NADH dehydrogenase (complex I), including 
the NADH-binding proteins related to NuoF 
(Desku_2990, 2308 and 2996) and the electron 
transfer subunits related to NuoE (Desku_2991, 
2935, and 2997) and to NuoG (Desku_2989). In 
three of the [FeFe]-hydrogenases this NuoG-like 
domain is fused with the catalytic subunit 
(Desku_2995, 2307 and 2934). Two of the 
multimeric hydrogenases are found next to 
[FeFe]-hydrogenases containing PAS-sensor do-
mains (Desku_2932 and Desku_2994), suggesting 
they are involved in the regulation of the synthesis 
of those hydrogenases. All complexes are predict-
ed to be cytoplasmic and not membrane bound. 
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Figure 8. Schematic representation of a putative confurcating formate dehydrogenase, two putative confurcating 
[FeFe]-hydrogenases and two ferredoxin re-oxidizing [FeFe]-hydrogenases in Desulfotomaculum kuznetsovii. 
Gene locus tag numbers and α-, β-, and γ-subunits are depicted. Moreover, predicted iron-sulfur clusters and 
metal-binding sites are indicated. 

 
Apart from a possible involvement in the acetate 
oxidation pathway (Figure 4), it remains unclear 
for which purpose D. kuznetsovii uses its 
confurcating formate dehydrogenase and 
hydrogenases because our genome analysis indi-
cates that pyruvate oxidation during propionate 
degradation generates formate instead of 
ferredoxin (Figure 6). 

Vitamin synthesis 
D. kuznetsovii is able to grow in medium without 
vitamins [1]. This indicates that D. kuznetsovii is 
able to synthesize all the vitamins that are re-
quired for its metabolism and that vitamin synthe-
sis genes should be present in the genome. Vita-
min B12 is essential for the methylmalonyl-CoA 

pathway and the acetyl-coA pathway. The biosyn-
thesis of cobalamin (vitamin B12) is known to oc-
cur from uroporphyrinogen-III to 
adenosylcobalamin via two possible pathways, the 
aerobic and anaerobic pathway of the corrinoid 
ring [49,50]. The D. kuznetsovii genome contains 
all genes needed for the anaerobic pathway: cysGA 
(Desku_1520), cysGB (Desku_1460, Desku_1523), 
cbiA (Desku_1765, Desku_2368), cbiBCDEFGHJLPT 
(Desku_2369, 1459, 1468, 1467, 1464, 1463, 
1462, 1461, 1465, 2370 and 1466, respectively), 
cobalt reductase (Desku_2757), btuR 
(Desku_0004, 1209), cobS (Desku_2367) and cobU 
(Desku_2371). Moreover, D. kuznetsovii has genes 
to convert glutamyl tRNA to uroporphyrinogen-III, 
hemABCDL (Desku_1522, 1518, 1521, 1520 and 
1522, respectively). The genome also contains 
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some unassigned cobalamin synthesis genes 
(P47K, Desku_0046, 0053; cbiM, Desku_2905), 
corrinoid transport proteins (Desku_0693, 702, 
2237-2239, 2902-2904, 3025-3027) and, interest-
ingly, two cobN genes (Desku_2189, 2227), genes 
involved in the aerobic pathway. It is unclear why 
D. kuznetsovii has these cobN genes, since all an-
aerobic pathway genes are present in the genome, 
and it is unclear if the products of these two genes 
are used for cobalamin synthesis by D. kuznetsovii. 

Other vitamin synthesis genes present in the ge-
nome of D. kuznetsovii are genes involved in biotin 
synthesis (vitamin H) (Desku_1295-1297, 2246-
2247, 2317), nicotinamide (vitamin B3) synthesis 
(Desku_0433, 0614, 0662, 0815, 1248, 1417, 
1472, 1499, 1925, 1951, 3103, 3121, 3227, 3228, 
3231, 3246, 3337), thiamin (vitamin B1) synthesis 
(0372, 0543, 0545, 2253, 2363, 2639), riboflavin 
(vitamin B2) synthesis (Desku_1244-1247), and 
pantothenate (vitamin B5) synthesis 
(Desku_3262). The genes involved in coenzyme A 
production from pantothenate are also present in 
the D. kuznetsovii genome (Desku_1254, 1307, 
3145, 3200). Moreover, genes involved in the bio-
synthesis of pyridoxine (vitamin B6) via the 
deoxyxylulose 5-phosphate (DXP) independent 
route were found to be in the genome 
(Desku_0007, 0008). These genes code for two 
enzymes that facilitate the conversion of gluta-
mine to the active form of vitamin B6, pyridoxal 5’-
phosphate [51]. 

Menaquinone (vitamin K) and ubiquinone (coen-
zyme Q10) biosynthesis is important because of 
the electron transport function in the membranes. 
The genes that code for the biosynthesis enzymes 
from polyprenyldiphosphate to menaquinone and 
ubiquinone are present in the D. kuznetsovii ge-
nome (Desku_0124, 0126, 0629, 1551-1554, 1829, 
2629 and 3525), except for the genes that code for 
a 2-polyprenyl-6-methoxyphenol 4-
monooxygenase (UbiH) and 2-polyprenyl-3-
methyl-6-methoxy-1,4-benzoquinone hydroxylase 
(UbiF). Additionally, three genes (Desku_1548-
1550) could be identified as putative menaqui-

none biosynthesis genes and are part of a mena-
quinone biosynthesis gene cluster (Desku_1548-
1554). The products of those three genes could be 
involved in the reactions of the missing UbiH and 
UbiF encoding genes. 

Folate (vitamin B9) biosynthesis is also of great 
importance for D. kuznetsovii, because it is an es-
sential part of the acetyl-CoA pathway. It is in-
volved in the transfer of one-carbon compounds 
and can be biosynthesized from chorismate and 
guanosine triphosphate (GTP) [52-55]. Both 
pathways use a dihydropteroate synthase to pro-
duce dihydropteroate. The genome of D. 
kuznetsovii contains the genes encoding the en-
zymes involved in the pathway from chorismate to 
dihydropteroate (Desku_0219, 2268-2269) and 
from GTP to dihydropteroate (Desku_0210, 0219-
0221 and 1419). The gene encoding a phospha-
tase (Desku_0210) in the D. kuznetsovii genome is 
probably involved in the removal of phosphate 
groups from dihydropterine triphosphate as a 
substitute for an alkaline phosphatase encoding 
gene, which is not present in the genome. Addi-
tionally, the genome contains a bifunctional pro-
tein encoding gene (Desku_404) that is expected 
to be responsible for the production of 
dihydrofolate (DHF) and the addition of multiple 
glutamate moieties to DHF or tetrahydrofolate 
(THF). However, the D. kuznetsovii genome lacks 
the DHF reductase encoding gene, which is re-
quired to reduce DHF to THF. The DHF reductase 
encoding gene appears to be absent in many mi-
croorganisms [56]. Levin et al. (2004) propose 
that in Halobacterium salinarum a dihydrofolate 
synthase and a dihydropteroate synthase domain 
is able to replace the function of the DHF 
reductase. Additionally, the authors show that 
when using a BLAST search, homologs of polypep-
tides can be found in organisms that lack a DHF 
reductase [56]. However, BLAST results showed 
no homologous protein encoding gene in the ge-
nome of D. kuznetsovii (data not shown). How in D. 
kuznetsovii DHF is reduced to THF can currently 
not be deduced from the genome sequence. 
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