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Saprospira grandis Gross 1911 is a member of the Saprospiraceae, a family in the class 
‘Sphingobacteria’ that remains poorly characterized at the genomic level. The species is known for 
preying on other marine bacteria via ‘ixotrophy’. S. grandis strain Sa g1 was isolated from decaying 
crab carapace in France and was selected for genome sequencing because of its isolated location in the 
tree of life. Only one type strain genome has been published so far from the Saprospiraceae, while the 
sequence of strain Sa g1 represents the second genome to be published from a non-type strain of S. 
grandis. Here we describe the features of this organism, together with the complete genome sequence 
and annotation. The 4,495,250 bp long Improved-High-Quality draft of the genome with its 3,536 pro-
tein-coding and 62 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project. 

Introduction 
Strain Sa g1 (= HR1 = DSM 2844 = ATCC 49590 = 
LMG 13157) belongs to the species Saprospira 
grandis [1,2] in the monospecific genus Saprospira 
[2,3]. The type strain of the species is Lewin WHT (= 
ATCC 23119 = LMG 10407) [1,3] and is known for its 
predatory life style when capturing and preying on 
other bacteria via ‘ixotrophy’ [2]. Strain Sa g1 was 
isolated in 1975 from decaying crab carapace in 
Roscoff, France [4]. The genus name was derived 
from the Greek adjective sapros, meaning 
rotten/putrid, and the Latin spira, a coil/spiral, 
resulting in the Neo-Latin Saprospira, a spiral 
associated with decaying matter [5]; the species 

epithet was derived from the Latin adjective grandis, 
large [5]. Life style and ecological role of members of 
the species was recently summarized by Saw et al. [6] 
when they reported the genome sequence of strain 
Lewin (isolated from La Jolla beach in San Diego; not 
to be confused with strain Lewin WHT, the type strain 
of the species which was also isolated by Lewin, but 
from a rockpool near high water, Woods Hole). Strain 
Lewin was the first member of the genus Saprospira 
to be completely sequenced. Here we present a 
summary classification and a set of features for S. 
grandis Sa g1, together with the description of the 
genomic sequencing and annotation. 
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Classification and features 
A representative genomic 16S rRNA sequence of 
strain Sa g1 was compared using NCBI BLAST [7,8] 
under default settings (e.g., considering only the 
high-scoring segment pairs (HSPs) from the best 
250 hits) with the most recent release of the 
Greengenes database [9] and the relative 
frequencies of taxa and keywords (reduced to their 
stem [10]) were determined, weighted by BLAST 
scores. The most frequently occurring genera were 
Saprospira (82.0%), Aureispira (5.4%), “Aureospira” 
(4.8%), Cytophaga (3.9%) and Lewinella (3.8%) (16 
hits in total). Regarding the three hits to sequences 
from members of the species, the average identity 
within HSPs was 99.4%, whereas the average 
coverage by HSPs was 98.6%. Among all other 
species, the one yielding the highest score was 
Aureispira maritima (AB278130), which 
corresponded to an identity of 87.3% and an HSP 
coverage of 98.0%. (Note that the Greengenes 
database uses the INSDC (= EMBL/NCBI/DDBJ) 

annotation, which is not an authoritative source for 
nomenclature or classification.) The highest-
scoring environmental sequence was FJ792500 
('Unexpectedly archaeal species shift between rare 
and dominant over thousand year time scales 
carbonate chimney Lost City Hydrothermal Field 
clone SGYF672'), which showed an identity of 
99.2% and an HSP coverage of 100.3%. The most 
frequently occurring keywords within the labels of 
all environmental samples which yielded hits were 
'lake' (3.8%), 'sludg' (2.9%), 'microbi' (2.8%), 'mat' 
(2.7%) and 'activ' (2.3%) (234 hits in total) and 
correspond to the already known habitats for 
strains of this species. 
Figure 1 shows the phylogenetic neighborhood of S. 
grandis strain Sa g1 in a 16S rRNA based tree. The 
sequences of the four 16S rRNA gene copies in the 
genome differ from each other by up to one 
nucleotide, and differ by up to seven nucleotides 
from the previously published 16S rRNA sequence 
(M58795), which contains 52 ambiguous base calls. 

 

 
Figure 1. Phylogenetic tree highlighting the position of S. grandis relative to the type strains of the other species 
within the family Saprospiraceae. The tree was inferred from 1,413 aligned characters [11,12] of the 16S rRNA 
gene sequence under the maximum likelihood (ML) criterion [13]. Rooting was done initially using the mid-
point method [14] and then checked for its agreement with the current classification (Table 1). The branches 
are scaled in terms of the expected number of substitutions per site. Numbers adjacent to the branches are 
support values from 250 ML bootstrap replicates [15] (left) and from 1,000 maximum parsimony bootstrap rep-
licates [16] (right) if larger than 60%. Lineages with type strain genome sequencing projects registered in 
GOLD [17] are labeled with one asterisk, those also listed as 'Complete and Published' with two asterisks [18]. 
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General features of S. grandis were summarized 
previously by Saw et al. in the short genome report 
of strain Lewin [6], and are therefore not repeated 
here. Individual features of strain Sa g1 are largely 
unknown due to a lack of relevant publications, as 

are chemotaxonomical data. A description of the 
isolation and some morphological features of strain 
Sa g1 are reported by Reichenbach [4]. Figure 2 
shows an electron micrograph of the S. grandis Sa 
g1 cells. 

 

Table 1. Classification and general features of S. grandis Sa g1 according to the MIGS recommendations [19] 
and the Names for Life database [2]. 

MIGS ID Property Term Evidence code 

 

Current classification 
 

Domain Bacteria TAS [20] 

Phylum Bacteroidetes TAS [21,22] 

Class ‘Sphingobacteria’ TAS [21,23] 

Order Sphingobacteriales TAS [21,24] 

Family Saprospiraceae TAS [21,25] 

Genus Saprospira TAS [3,26,27] 

Species Saprospira grandis TAS [3,26] 

Strain Sa g1 TAS [4] 

 Gram stain negative TAS [28,29] 

 Cell shape helical filaments TAS [28,29] 

 Motility via gliding TAS [28,29] 

 Sporulation non-sporulating NAS 

 Temperature range mesophile, 6-47°C TAS [28,29] 

 Optimum temperature 25-30°C TAS [4,28,29] 

 Salinity seawater TAS [28,29] 

MIGS-22 Oxygen requirement strictly aerobe TAS [28,29] 

 Carbon source peptides, proteins TAS [28,29] 

 Energy metabolism chemoorganotroph TAS [28,29] 

MIGS-6 Habitat marine littoral zone TAS [28] 

MIGS-15 Biotic relationship free living TAS [28] 

MIGS-14 Pathogenicity not reported  

 Biosafety level 1 TAS [30] 

MIGS-23.1 Isolation decaying crab carapace TAS [4] 

MIGS-4 Geographic location Roscoff, France TAS [4] 

MIGS-5 Sample collection time September 1975 TAS [4] 

MIGS-4.1 Latitude 48.70 NAS 

MIGS-4.2 Longitude -3.97  

MIGS-4.3 Depth not reported  

MIGS-4.4 Altitude not reported  

Evidence codes - IDA: Inferred from Direct Assay (first time in publication); TAS: Traceable Author Statement 
(i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for 
the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). 
These evidence codes are from the Gene Ontology project [31]. If the evidence code is IDA, then the property 
was directly observed for a living isolate by one of the authors or an expert mentioned in the acknowledge-
ments. 
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Figure 2. Scanning electron micrograph of S. grandis Sa g1 

Genome sequencing and annotation 
Genome project history 
This organism was selected for sequencing on the 
basis of its phylogenetic position [32], and is part 
of the Genomic Encyclopedia of Bacteria and 
Archaea project [33]. The genome project is 
deposited in the Genomes On Line Database [17] 
and the complete genome sequence is deposited 
in GenBank. Sequencing, finishing and annotation 
were performed by the DOE Joint Genome 
Institute (JGI). A summary of the project 
information is shown in Table 2. 

Growth conditions and DNA isolation 
S. grandis strain Sa g1, DSM 2844, was grown in 
DSMZ medium 172 (Cytophaga (marine) medium) 
[34] at 28°C. DNA was isolated from 0.5-1 g of cell 
paste using Jetflex Genomic DNA Purification kit 
(GENOMED 600100) following the standard 
protocol as recommended by the manufacturer 
without modification. DNA will be available on 
request through the DNA Bank Network [46]. 

Genome sequencing and assembly 
The genome was sequenced using a combination of 
Illumina and 454 sequencing platforms. All general 
aspects of library construction and sequencing can be 
found at the JGI website [35]. Pyrosequencing reads 
were assembled using the Newbler assembler 
(Roche). The initial Newbler assembly consisting of 
551 contigs in six scaffolds was converted into a 
phrap [36] assembly by making fake reads from the 

consensus, to collect the read pairs in the 454 paired 
end library. Illumina GAii sequencing data (3,575.7 
Mb) was assembled with Velvet [37] and the 
consensus sequences were shredded into 1.5 kb 
overlapped fake reads and assembled together with 
the 454 data. The 454 draft assembly was based on 
72.8 Mb of 454 paired end data. Newbler parameters 
are -consed -a 50 -l 350 -g -m -ml 20. The 
Phred/Phrap/Consed software package [36] was 
used for sequence assembly and quality assessment 
in the subsequent finishing process. After the shotgun 
stage, reads were assembled with parallel phrap 
(High Performance Software, LLC). Possible mis-
assemblies were corrected with gapResolution [35], 
Dupfinisher [38], or sequencing cloned bridging PCR 
fragments with subcloning. Gaps between contigs 
were closed by editing in Consed, by PCR and by 
Bubble PCR primer walks (J.-F. Chang, unpublished). 
A total of 45 additional reactions were necessary to 
close gaps and to raise the quality of the final contigs. 
Illumina reads were also used to correct potential 
base errors and increase consensus quality using a 
software Polisher developed at JGI [39]. The final 
assembly consists of 84 contigs in 5 scaffolds. 
Together, the combination of the Illumina and 454 
sequencing platforms provided 777.1 × coverage of 
the genome. The final assembly contained 235,183 
pyrosequence and 45,502,670 Illumina reads. 
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Table 2. Genome sequencing project information 
MIGS ID Property Term 
MIGS-31 Finishing quality Improved-High-Quality Draft 

MIGS-28 Libraries used 
Two genomic libraries: one 454 PE library (9 kb insert size), one 
Illumina library 

MIGS-29 Sequencing platforms Illumina GAii, 454 GS FLX Titanium 
MIGS-31.2 Sequencing coverage 768.5 × Illumina; 8.6 × pyrosequence 
MIGS-30 Assemblers Newbler version 2.3, Velvet version 1.0.13, phrap version 1.080812 
MIGS-32 Gene calling method Prodigal 1.4, GenePRIM 
 INSDC ID requested February 9, 2012 
 GenBank Date of Release Pending 
 GOLD ID Gi03955 
 NCBI project ID 61003 
 Database: IMG-GEBA 2509276035 
MIGS-13 Source material identifier DSM 2844 
 Project relevance Tree of Life, GEBA 

 
Genome annotation 
Genes were identified using Prodigal [40] as part of 
the Oak Ridge National Laboratory genome 
annotation pipeline, followed by a round of manual 
curation using the JGI GenePRIMP pipeline [41]. The 
predicted CDSs were translated and used to search 
the National Center for Biotechnology Information 
(NCBI) non-redundant database, UniProt, TIGRFam, 
Pfam, PRIAM, KEGG, COG, and InterPro databases. 
Additional gene prediction analysis and functional 
annotation was performed within the Integrated 
Microbial Genomes - Expert Review (IMG-ER) 
platform [42]. 

Genome properties 
The Improved-High-Quality draft assembly of the 
genome consists of 84 contigs in four scaffolds 
representing the chromosome (4,422,561 bp, 11,045 
bp, 2,786 bp and 2,223 bp length, respectively) and 
one 56,635 bp plasmid scaffold, with an overall 
46.1% G+C content (Table 3 and Figure 3). Of the 
3,598 genes predicted, 3,536 were protein-coding 
genes, and 62 RNAs; 70 pseudogenes were also 
identified. The majority of the protein-coding genes 
(57.4%) were assigned a putative function while the 
remaining ones were annotated as hypothetical 
proteins. The distribution of genes into COGs 
functional categories is presented in Table 4. 

Table 3. Genome Statistics 
Attribute Value % of Total 
Genome size (bp) 4,495,250 100.00% 
DNA coding region (bp) 3,693,336 82.16% 
DNA G+C content (bp) 2,067,067 46.06% 
Number of scaffolds 5*  
Extrachromosomal elements 1  
Total genes 3,598 100.00% 
RNA genes 62 1.72% 
rRNA operons 3**  
tRNA genes 48 1.33% 
Protein-coding genes 3,536 98.28% 
Pseudo genes 70 1.95% 
Genes with function prediction (proteins) 2,064 57.37% 
Genes in paralog clusters 1,575 43.77% 
Genes assigned to COGs 2,064 57.37% 
Genes assigned Pfam domains 2,072 57.59% 
Genes with signal peptides 1,109 30.82% 
Genes with transmembrane helices 687 19.09% 
CRISPR repeats 5  

* four scaffolds for the chromosome and one for a plasmid 
** only two rRNA operons appear to be complete; the third copy appears to 
be split into two incomplete fractions due to unresolved assembly problems. 
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Figure 3. Graphical map of the largest scaffold, SapgrDRAFT_Contig123.4, which represents >99.6% of the chromo-
some. The smaller contigs of the chromosome and the plasmid are not shown, but accessible through the img/er pages 
on the JGI web pages [35,42]. From bottom to top: Genes on forward strand (colored by COG categories), Genes on re-
verse strand (colored by COG categories), RNA genes (tRNAs green, rRNAs red, other RNAs black), GC content, GC 
skew. 

Table 4. Number of genes associated with the general COG functional categories 
Code value %age Description 

J 152 6.8 Translation, ribosomal structure and biogenesis 

A 0 0.0 RNA processing and modification 

K 118 5.3 Transcription 

L 167 7.5 Replication, recombination and repair 

B 1 0.0 Chromatin structure and dynamics 

D 34 1.5 Cell cycle control, cell division, chromosome partitioning 

Y 0 0.0 Nuclear structure 

V 53 2.4 Defense mechanisms 

T 98 4.4 Signal transduction mechanisms 

M 217 9.7 Cell wall/membrane biogenesis 

N 25 1.1 Cell motility 

Z 1 0.0 Cytoskeleton 

W 0 0.0 Extracellular structures 

U 55 2.5 Intracellular trafficking and secretion, and vesicular transport 

O 121 5.4 Posttranslational modification, protein turnover, chaperones 

C 108 4.9 Energy production and conversion 

G 51 2.3 Carbohydrate transport and metabolism 

E 125 5.6 Amino acid transport and metabolism 

F 57 2.6 Nucleotide transport and metabolism 

H 101 4.5 Coenzyme transport and metabolism 

I 88 4.0 Lipid transport and metabolism 

P 91 4.1 Inorganic ion transport and metabolism 

Q 35 1.6 Secondary metabolites biosynthesis, transport and catabolism 

R 316 14.2 General function prediction only 

S 215 9.7 Function unknown 

- 1,534 42.6 Not in COGs 
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Insights into the genome sequence 
Comparison with the genome sequence of 
 S. grandis strain Lewin 
The two complete copies of the 16S rRNA gene in 
the Sa g1 genome show 99.5% sequence identity 
with those of strain Lewin [6], but only 98.0% 
sequence identity with the respective sequence 
from the yet to be genome-sequenced type strain 
Lewin WHT (ATCC 23119, M58795) [43]; this 
discrepancy is due to the huge number of 
ambiguous base calls in M58795, and is 
relativized by 99.4% identical bases within the 
HSPs. Given the different habitats of the two 
sequenced strains it is interesting to compare 
some basic genome features and their 
membership to the same species. 

The second largest scaffold in the Improved-
High-Quality draft assembly of the Sa g1 genome 
(SapgrDRAFT_Contig162.5) has a size of 56,635 
bp, which is comparable to the size of plasmid 
SGRA01 in S. grandis strain Lewin, 54,948 bp 
(CP002832) [6]. A BLAST search against the NCBI 
nr database revealed a full length colinearity 
with about 94% sequence identity between 
SapgrDRAFT_Contig162.5 and the plasmid of S. 
grandis strain Lewin. Further comparison of the 
two sequences with the GGDC-Genome-to-
Genome Distance Calculator [44,45] revealed 
distances of only 0.0704 (formula 1) to 0.1342 
(formula 3), corresponding to 82.7 to 88.3% DDH 
values. SapgrDRAFT_3602 encodes a protein 
involved in initiation of plasmid replication, 
RepB, while the largest fraction of (13) genes 
encoded on this scaffold belong to COG function 
category ‘nucleotide transport and metabolism’ 
(similar to SGRA01); therefore suggesting that 
SapgrDRAFT_Contig162.5 is a plasmid whose 
sequence was not circularized during the genome 
assembly. 

The largest scaffold in the draft assembly of Sa g1 
(SapgrDRAFT_Contig123.4) has a size of 
4,422,561 bp, which is comparable to the size of 
the S. grandis strain Lewin chromosome, 
4,345,237 bp. The overall genome statistics (see 
Table 3) of the two strains is similar in some 
features, such as G+C content (46.1% strain Sa g1 
vs. 46.4% strain Lewin), total number of genes 
(3,598 vs. 4,311), genes with function predictions 
(2,064 vs. 2,173), three rRNA operons (both), but 

deviates more in others, such as genes in paralog 
clusters (1,575 vs. 215), genes with signal 
peptides (1,109 vs. 589), and genes with 
transmembrane helices (687 vs. 778), which may 
reflect the differences in the gene calling and 
annotation process (strain Lewin is not yet 
featured in IMG [42]. As for the number of genes 
associated with the general COG functional 
categories (see Table 4) there are categories with 
very similar content, such as transcription (118 
genes, both), translation (152 vs. 160), defense 
mechanisms (53 vs. 52), cell motility (25 vs. 26), 
lipid transport (88 vs. 90) and cell 
wall/membrane biogenesis (217 vs. 206), while 
other categories deviate more significantly, such 
as replication (167 vs. 186), cell cycle control (34 
vs. 20), intracellular trafficking (55 vs. 44), 
energy production and conversion (108 vs. 123), 
and secondary metabolites biosynthesis an 
catabolism (35 vs. 52), which again might be 
partially attributed to different procedures in the 
annotation processes. 

The sequences of SapgrDRAFT_Contig123.4 and 
the chromosome of strain Lewin (CP002831), 
which represent roughly 99% of the respective 
genomes, were also compared with the GGDC-
Genome-to-Genome Distance Calculator [44,45]. 
The inferred distances from formulas 1 and 3 
were 0.1139 and 0.1741, respectively, 
corresponding to 83.1% and 77.9% DDH values, 
respectively, estimated via regression-based 
predictions. These values indicate that both 
strains belong to the same species, S. grandis. 

The sequence of the three smaller scaffolds 
(SapgrDRAFT_Contig118.2 with 11,045 bp 
length, SapgrDRAFT_Contig106.1 with 2,786 bp 
and SapgrDRAFT_Contig119.3 with 2,223 bp) 
were compared against the NCBI nr database and 
revealed significant similarities only with the 
chromosome of strain Lewin. 

http://dx.doi.org/10.1601/nm.8240�
http://dx.doi.org/10.1601/nm.8240�
http://dx.doi.org/10.1601/nm.8240�
http://dx.doi.org/10.1601/nm.8240�
http://dx.doi.org/10.1601/nm.8240�
http://dx.doi.org/10.1601/nm.8240�


Mavromatis et al. 

http://standardsingenomics.org 217 

Acknowledgements 
We would like to gratefully acknowledge the help of 
Maren Schröder (DSMZ) for growing S. grandis cul-
tures. This work was performed under the auspices of 
the US Department of Energy Office of Science, Biologi-
cal and Environmental Research Program, and by the 
University of California, Lawrence Berkeley National 
Laboratory under contract No. DE-AC02-05CH11231, 

Lawrence Livermore National Laboratory under Con-
tract No. DE-AC52-07NA27344, and Los Alamos Na-
tional Laboratory under contract No. DE-AC02-
06NA25396, UT-Battelle and Oak Ridge National La-
boratory under contract DE-AC05-00OR22725, as well 
as German Research Foundation (DFG) INST 599/1-2. 

References 
1. Dawyndt P, Vancanneyt M, De Meyer H, Swings 

J. Knowledge accumulation and resolution of data 
inconsistencies during the integration of microbial 
information sources. IEEE Trans Knowl Data Eng 
2005; 17:1111-1126. 
http://dx.doi.org/10.1109/TKDE.2005.131 

2. Garrity G. NamesforLife. BrowserTool takes ex-
pertise out of the database and puts it right in the 
browser. Microbiol Today 2010; 37:9. 

3. Skerman VBD, McGowan V, Sneath PHA, eds. 
Approved Lists of Bacterial Names. Int J Syst 
Bacteriol 1980; 30:225-420. 
http://dx.doi.org/10.1099/00207713-30-1-225 

4.  Reichenbach H. Saprospira grandis 
(Leucotrichales) – Wachstum und Bewegung. Film 
E2424 des Instituts Wiss Film, Göttingen, Publ 
Wiss Film, Sekt Biol 1980; 13:26/E2424. 

5. Euzéby JP. List of Beacterial Names with Strand-
ing in Nomenclature: a folder on the internet. Int J 
Syst Bacteriol 1997; 47:590-592. PubMed 
http://dx.doi.org/10.1099/00207713-47-2-590 

6. Saw JHW, Yuryew A, Kanbe M, Hou S, Young 
AG, Aizawa SI, Alam M. Complete genome se-
quencing and analysis of Saprospira grandis str. 
Lewin, a predatory marine bacterium. Stand Ge-
nomic Sci 2012; 6:84-93. 

7. Altschul SF, Gish W, Miller W, Myers EW, 
Lipman DJ. Basic local alignment search tool. J 
Mol Biol 1990; 215:403-410. PubMed 

8. Korf I, Yandell M, Bedell J. BLAST, O'Reilly, Se-
bastopol, 2003. 

9. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, 
Brodie EL, Keller K, Huber T, Dalevi D, Hu P, 
Andersen GL. Greengenes, a chimera-checked 
16S rRNA gene database and workbench compat-
ible with ARB. Appl Environ Microbiol 2006; 
72:5069-5072. PubMed 
http://dx.doi.org/10.1128/AEM.03006-05 

10.  Porter MF. An algorithm for suffix stripping. Pro-
gram: electronic library and information systems 
1980; 14:130-137. 

11. Lee C, Grasso C, Sharlow MF. Multiple sequence 
alignment using partial order graphs. Bioinformat-
ics 2002; 18:452-464. PubMed 
http://dx.doi.org/10.1093/bioinformatics/18.3.452 

12. Castresana J. Selection of conserved blocks from 
multiple alignments for their use in phylogenetic 
analysis. Mol Biol Evol 2000; 17:540-552. Pub-
Med 
http://dx.doi.org/10.1093/oxfordjournals.molbev.a
026334 

13. Stamatakis A, Hoover P, Rougemont J. A rapid 
bootstrap algorithm for the RAxML web servers. 
Syst Biol 2008; 57:758-771. PubMed 
http://dx.doi.org/10.1080/10635150802429642 

14. Hess PN, De Moraes Russo CA. An empirical test 
of the midpoint rooting method. Biol J Linn Soc 
Lond 2007; 92:669-674. 
http://dx.doi.org/10.1111/j.1095-
8312.2007.00864.x 

15. Pattengale ND, Alipour M, Bininda-Emonds ORP, 
Moret BME, Stamatakis A. How many bootstrap 
replicates are necessary? Lect Notes Comput Sci 
2009; 5541:184-200. 
http://dx.doi.org/10.1007/978-3-642-02008-7_13 

16. Swofford DL. PAUP*: Phylogenetic Analysis Us-
ing Parsimony (*and Other Methods), Version 4.0 
b10. Sinauer Associates, Sunderland, 2002. 

17. Pagani I, Liolios K, Jansson J, Chen IM, Smirnova 
T, Nosrat B, Markowitz VM, Kyrpides NC. The 
Genomes OnLine Database (GOLD) v.4: status of 
genomic and metagenomic projects and their as-
sociated metadata. Nucleic Acids Res 2012; 
40:D571-D579. PubMed 
http://dx.doi.org/10.1093/nar/gkr1100 

18. Daligault H, Lapidus A, Zyetun A, Nolan M, Lu-
cas S, Glavina Del Rio T, Tice H, Cheng JF, Tapia 
R, Han C, et al. Complete genome sequence of 
Haliscomenobacter hydrossis type strain (OT). 

http://standardsingenomics.org/�
http://dx.doi.org/10.1601/nm.8240�
http://dx.doi.org/10.1109/TKDE.2005.131�
http://dx.doi.org/10.1099/00207713-30-1-225�
http://dx.doi.org/10.1601/nm.8240�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9103655&dopt=Abstract�
http://dx.doi.org/10.1099/00207713-47-2-590�
http://dx.doi.org/10.1601/nm.8240�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=2231712&dopt=Abstract�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16820507&dopt=Abstract�
http://dx.doi.org/10.1128/AEM.03006-05�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11934745&dopt=Abstract�
http://dx.doi.org/10.1093/bioinformatics/18.3.452�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10742046&dopt=Abstract�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10742046&dopt=Abstract�
http://dx.doi.org/10.1093/oxfordjournals.molbev.a026334�
http://dx.doi.org/10.1093/oxfordjournals.molbev.a026334�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18853362&dopt=Abstract�
http://dx.doi.org/10.1080/10635150802429642�
http://dx.doi.org/10.1111/j.1095-8312.2007.00864.x�
http://dx.doi.org/10.1111/j.1095-8312.2007.00864.x�
http://dx.doi.org/10.1007/978-3-642-02008-7_13�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22135293&dopt=Abstract�
http://dx.doi.org/10.1093/nar/gkr1100�
http://dx.doi.org/10.1601/nm.8242�


Saprospira grandis strain Sa g1 (= HR1) 

218 Standards in Genomic Sciences 

Stand Genomic Sci 2011; 4:352-360. PubMed 
http://dx.doi.org/10.4056/sigs.1964579 

19. Field D, Garrity G, Gray T, Morrison N, Selengut 
J, Sterk P, Tatusova T, Thomson N, Allen MJ, 
Angiuoli SV, et al. The minimum information 
about a genome sequence (MIGS) specification. 
Nat Biotechnol 2008; 26:541-547. PubMed 
http://dx.doi.org/10.1038/nbt1360 

20. Woese CR, Kandler O, Wheelis ML. Towards a 
natural system of organisms. Proposal for the do-
mains Archaea and Bacteria. Proc Natl Acad Sci 
USA 1990; 87:4576-4579. PubMed 
http://dx.doi.org/10.1073/pnas.87.12.4576 

21. Validation List No. 143. Int J Syst Evol Microbiol 
2012; 62:1-4. 
http://dx.doi.org/10.1099/ijs.0.039487-0 

22. Krieg NR, Ludwig W, Euzéby J, Whitman WB. 
Phylum XIV. Bacteroidetes phyl. nov. In: Krieg 
NR, Staley JT, Brown DR, Hedlund BP, Paster BJ, 
Ward NL, Ludwig W, Whitman WB (eds), 
Bergey's Manual of Systematic Bacteriology, Se-
cond Edition, Volume 4, Springer, New York, 
2011, p. 25. 

23. Kämpfer P. Class III. Sphingobacteriia class. nov. 
In: Krieg NR, Staley JT, Brown DR, Hedlund BP, 
Paster BJ, Ward NL, Ludwig W, Whitman WB 
(eds), Bergey's Manual of Systematic Bacteriolo-
gy, Second Edition, Volume 4, Springer, New 
York, 2011, p. 330. 

24. Kämpfer P. Order I. Sphingobacteriales ord. nov. 
In: Krieg NR, Staley JT, Brown DR, Hedlund BP, 
Paster BJ, Ward NL, Ludwig W, Whitman WB 
(eds), Bergey's Manual of Systematic Bacteriolo-
gy, Second Edition, Volume 4, Springer, New 
York, 2011. 

25. Krieg NR, Staley JT, Brown DR, Hedlund BP, Pas-
ter BJ, Ward NL, Ludwig W, Whitman WB. Fami-
ly III. Saprospiraceae fam. nov. In: Krieg NR, 
Staley JT, Brown DR, Hedlund BP, Paster BJ, 
Ward NL, Ludwig W, Whitman WB (eds), 
Bergey's Manual of Systematic Bacteriology, Se-
cond Edition, Volume 4, Springer, New York, 
2010, p. 358. 

26. Gross J. Über freilebende Spironemaceen. 
Mitteilungen aus der Zoologischen Station zu 
Neapel 1911; 20:188-203. 

27. Lewin RA, Leadbetter ER. Genus V. Saprospira 
Gross 1911, 190; Lewin 1962, 560 emend. mut. 
char. In: Buchanan RE, Gibbons NE (eds), 
Bergey's Manual of Determinative Bacteriology, 
Eighth Edition, The Williams and Wilkins Co., 
Baltimore, 1974, p. 109-111. 

28. Lewin RA. Growth and nutrition of Saprospira 
grandis Gross (Flexibacterales). Can J Microbiol 
1972; 18:361-365. PubMed 
http://dx.doi.org/10.1139/m72-055 

29. Reichenbach H. The Genus Saprospira. In: 
Dworkin M, Falkow, S, Rosenberg, E, Schleifer, 
KH, Stackebrandt, E (eds). The Prokaryotes. 3rd 
ed. Volume 3. New York, NY: Springer; 2006. p 
591-601. 

30. BAuA. 2010, Classification of Bacteria and 
Archaea in risk groups. http://www.baua.de TRBA 
466, p. 198. 

31. Ashburner M, Ball CA, Blake JA, Botstein D, But-
ler H, Cherry JM, Davis AP, Dolinski K, Dwight 
SS, Eppig JT, et al. Gene ontology: tool for the 
unification of biology. The Gene Ontology Con-
sortium. Nat Genet 2000; 25:25-29. PubMed 
http://dx.doi.org/10.1038/75556 

32. Klenk HP, Göker M. En route to a genome-based 
classification of Archaea and Bacteria? Syst Appl 
Microbiol 2010; 33:175-182. PubMed 
http://dx.doi.org/10.1016/j.syapm.2010.03.003 

33. Wu D, Hugenholtz P, Mavromatis K, Pukall R, 
Dalin E, Ivanova NN, Kunin V, Goodwin L, Wu 
M, Tindall BJ, et al. A phylogeny-driven Genomic 
Encyclopaedia of Bacteria and Archaea. Nature 
2009; 462:1056-1060. PubMed 
http://dx.doi.org/10.1038/nature08656 

34. List of growth media used at DSMZ: 
http://www.dsmz.de/catalogues/catalogue-
microorganisms/culture-technology/list-of-media-
for-microorganisms.html. 

35. The DOE Joint Genome Institute. 
www.jgi.doe.gov 

36. Phrap and Phred for Windows. MacOS, Linux, 
and Unix. www.phrap.com 

37. Zerbino DR, Birney E. Velvet: algorithms for de 
novo short read assembly using de Bruijn graphs. 
Genome Res 2008; 18:821-829. PubMed 
http://dx.doi.org/10.1101/gr.074492.107 

38. Han C, Chain P. Finishing repeat regions auto-
matically with Dupfinisher. In: Proceeding of the 
2006 international conference on bioinformatics 
& computational biology. Arabnia HR, Valafar H 
(eds), CSREA Press. June 26-29, 2006: 141-146. 

39. Lapidus A, LaButti K, Foster B, Lowry S, Trong S, 
Goltsman E. POLISHER: An effective tool for us-
ing ultra short reads in microbial genome assem-
bly and finishing. AGBT, Marco Island, FL, 2008. 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21886862&dopt=Abstract�
http://dx.doi.org/10.4056/sigs.1964579�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18464787&dopt=Abstract�
http://dx.doi.org/10.1038/nbt1360�
http://dx.doi.org/10.1601/nm.1�
http://dx.doi.org/10.1601/nm.419�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=2112744&dopt=Abstract�
http://dx.doi.org/10.1073/pnas.87.12.4576�
http://dx.doi.org/10.1099/ijs.0.039487-0�
http://dx.doi.org/10.1601/nm.7928�
http://dx.doi.org/10.1601/nm.22759�
http://dx.doi.org/10.1601/nm.8221�
http://dx.doi.org/10.1601/nm.8238�
http://dx.doi.org/10.1601/nm.8239�
http://dx.doi.org/10.1601/nm.8240�
http://dx.doi.org/10.1601/nm.8240�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=5057391&dopt=Abstract�
http://dx.doi.org/10.1139/m72-055�
http://dx.doi.org/10.1601/nm.8239�
http://dx.doi.org/10.1601/nm.419�
http://dx.doi.org/10.1601/nm.1�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10802651&dopt=Abstract�
http://dx.doi.org/10.1038/75556�
http://dx.doi.org/10.1601/nm.1�
http://dx.doi.org/10.1601/nm.419�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20409658&dopt=Abstract�
http://dx.doi.org/10.1016/j.syapm.2010.03.003�
http://dx.doi.org/10.1601/nm.419�
http://dx.doi.org/10.1601/nm.1�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20033048&dopt=Abstract�
http://dx.doi.org/10.1038/nature08656�
http://www.dsmz.de/catalogues/catalogue-microorganisms/culture-technology/list-of-media-for-microorganisms.html�
http://www.dsmz.de/catalogues/catalogue-microorganisms/culture-technology/list-of-media-for-microorganisms.html�
http://www.dsmz.de/catalogues/catalogue-microorganisms/culture-technology/list-of-media-for-microorganisms.html�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18349386&dopt=Abstract�
http://dx.doi.org/10.1101/gr.074492.107�


Mavromatis et al. 

http://standardsingenomics.org 219 

40. Hyatt D, Chen GL, Locascio PF, Land ML, Lar-
imer FW, Hauser LJ. Prodigal Prokaryotic Dynam-
ic Programming Genefinding Algorithm. BMC Bi-
oinformatics 2010; 11:119. PubMed 
http://dx.doi.org/10.1186/1471-2105-11-119 

41. Pati A, Ivanova N, Mikhailova N, Ovchinikova G, 
Hooper SD, Lykidis A, Kyrpides NC. GenePRIMP: 
A Gene Prediction Improvement Pipeline for mi-
crobial genomes. Nat Methods 2010; 7:455-457. 
PubMed http://dx.doi.org/10.1038/nmeth.1457 

42. Markowitz VM, Ivanova NN, Chen IMA, Chu K, 
Kyrpides NC. IMG ER: a system for microbial ge-
nome annotation expert review and curation. Bio-
informatics 2009; 25:2271-2278. PubMed 
http://dx.doi.org/10.1093/bioinformatics/btp393 

43. Gherna R, Woese CR. A partial phylogenetic 
analysis of the ‘flavobacter-bacteroides’ phylum: 
basis for taxonomic restructuring. Syst Appl 
Microbiol 1992; 15:513-521. PubMed 

http://dx.doi.org/10.1016/S0723-2020(11)80110-
4 

44. Auch AF, von Jan M, Klenk HP, Göker M. Digital 
DNA-DNA hybridization for microbial species 
delineation by means of genome-to-genome se-
quence comparison. Stand Genomic Sci 2010; 
2:117-134. PubMed 
http://dx.doi.org/10.4056/sigs.531120 

45. Auch AF, Klenk HP, Göker M. Standard operating 
procedure for calculating genome-to-genome dis-
tances based on high-scoring segment pairs. 
Stand Genomic Sci 2010; 2:142-148. PubMed 
http://dx.doi.org/10.4056/sigs.541628 

46. Gemeinholzer B, Dröge G, Zetzsche H, 
Haszprunar G, Klenk HP, Güntsch A, Berendsohn 
WG, Wägele JW. The DNA Bank Network: the 
start from a German initiative. Biopreserv Biobank 
2011; 9:51-55. 
http://dx.doi.org/10.1089/bio.2010.0029 

 

http://standardsingenomics.org/�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20211023&dopt=Abstract�
http://dx.doi.org/10.1186/1471-2105-11-119�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20436475&dopt=Abstract�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20436475&dopt=Abstract�
http://dx.doi.org/10.1038/nmeth.1457�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19561336&dopt=Abstract�
http://dx.doi.org/10.1093/bioinformatics/btp393�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11541229&dopt=Abstract�
http://dx.doi.org/10.1016/S0723-2020(11)80110-4�
http://dx.doi.org/10.1016/S0723-2020(11)80110-4�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21304684&dopt=Abstract�
http://dx.doi.org/10.4056/sigs.531120�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21304686&dopt=Abstract�
http://dx.doi.org/10.4056/sigs.541628�
http://dx.doi.org/10.1089/bio.2010.0029�

	Permanent draft genome sequence of the gliding  predator Saprospira grandis strain Sa g1 (= HR1)
	Konstantinos Mavromatis1, Olga Chertkov1,2, Alla Lapidus1, Matt Nolan1, Susan Lucas1, Hope Tice1, Tijana Glavina Del Rio1, Jan-Fang Cheng1, Cliff Han1,2, Roxanne Tapia1,2, David Bruce1,2, Lynne A. Goodwin1,2, Sam Pitluck1, Marcel Huntemann1, Konstanti...
	1 DOE Joint Genome Institute, Walnut Creek, California, USA
	2 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
	3 Biological Data Management and Technology Center, Lawrence Berkeley National  Laboratory, Berkeley, California, USA
	4 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
	5 HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany
	6 Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
	7 University of California Davis Genome Center, Davis, California, USA
	8 Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
	Introduction
	Classification and features
	Genome sequencing and annotation
	Genome project history
	Growth conditions and DNA isolation
	Genome sequencing and assembly
	Genome annotation

	Genome properties
	Insights into the genome sequence
	Comparison with the genome sequence of
	S. grandis strain Lewin

	Acknowledgements



