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Hydrogenobacter thermophilus Kawasumi et al. 1984 is the type species of the genus Hydro-
genobacter. H. thermophilus was the first obligate autotrophic organism reported among 
aerobic hydrogen-oxidizing bacteria. Strain TK-6T is of interest because of the unusually effi-
cient hydrogen-oxidizing ability of this strain, which results in a faster generation time com-
pared to other autotrophs. It is also able to grow anaerobically using nitrate as an electron 
acceptor when molecular hydrogen is used as the energy source, and able to aerobically fix 
CO2 via the reductive tricarboxylic acid cycle. This is the fifth completed genome sequence 
in the family Aquificaceae, and the second genome sequence determined from a strain de-
rived from the original isolate. Here we describe the features of this organism, together with 
the complete genome sequence and annotation. The 1,742,932 bp long genome with its 
1,899 protein-coding and 49 RNA genes is a part of the Genomic Encyclopedia of Bacteria 
and Archaea project. 

Introduction 
Strain TK-6T (= DSM 6534 = JCM 7687 = NBRC 
102181) is the type strain of Hydrogenobacter 
thermophilus, which in turn is the type species of 
the genus Hydrogenobacter [1]. Currently, there are 
four species in the genus Hydrogenobacter, one of 
which has subsequently been reclassified as Hydro-
genobaculum acidophilum. Strain TK-6T was pre-
viously isolated by Kawasumi in 1980 [2]. The ge-
nus name Calderobacterium Kryukov et al. 1984 is, 

based on page priority, a later heterotypic synonym 
of Hydrogenobacter Kawasumi et al. 1984 [3], be-
cause of similar genetic, phenotypic and biochemical 
properties between the type strains of H. thermophi-
lus and Calderobacterium hydrogenophilum. De-
spite the relatively high degree of 16S rRNA gene 
sequence similarity between the two species, DNA-
DNA hybridization [4] indicates that they may be 
considered to be different species within the genus 
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Hydrogenobacter [3]. The genus name Hydrogeno-
bacter is derived from the Latin words hydroge-
num, meaning ‘that which produces water’ and bac-
ter, referring to a rod that forms water when ex-
posed to oxygen. The species epithet thermophilus 
derives from the Greek words therme, heat, and 
philus, loving, meaning a heat-loving organism. 
Strain TK-6T was isolated from hot springs located 
on the Izu peninsula in Japan [1]. Some strains of H. 
thermophilus were also isolated from a geothermal 
spring in Tuscany, Italy [5,6]. Other strains similar 
to H. thermophilus have been isolated from differ-
ent environments, including a saline hot spring in 
Japan for 'H. halophilus' [7], and a volcanic area in 
Iceland for  Hydrogenobacter strain H-1 [8], strains 
T3, T13 and T171 [5]. Until 1985, H. thermophilus 
was the only obligate autotroph among all aerobic 
hydrogen-oxidizing bacteria reported so far [9,10]. 
The activities of enzymes such as NADH:ferredoxin 
reductase (EC 1.18.1.3) and NAD-reducing hydro-
genase (EC 1.12.1.2) were studied extensively in 
strain TK-6T [11]. Another genome sequence of a 
strain derived from the original isolate, presumably 
held in the lab of one of the co-authors, has been 
published recently without much metadata [12]. 
Here we present a summary classification and a set 
of features for H. thermophilus strain TK-6T, togeth-
er with the description of the complete genomic 
sequencing and annotation. 

Classification and features 
The 16S rRNA gene sequence of the strain TK-6T 
(Z30214) shows the highest degree of sequence 
identity, 97%, to the type strain of H. hydrogenophi-
lus [6]. Further analysis shows 96% 16S rRNA gene 
sequence identity with an uncultured Aquificales 
bacterium clone pKA (AF453505) from a near-
neutral thermal spring in Kamchatka, Russia. The 
single genomic 16S rRNA sequence of H. thermophi-
lus was compared with the most recent release of 
the Greengenes database [13] using NCBI BLAST 
under default values and the relative frequencies of 
taxa and keywords, weighted by BLAST scores, were 
determined. The five most frequent genera were 
Hydrogenobacter (52.4%), Thermocrinis (18.8%), 
Aquifex (10.3%), Sulfurihydrogenibium (6.2%) and 
Hydrogenivirga (5.7%). Regarding hits to sequences 
from other members of the genus, the average iden-
tity within HSPs (high-scoring segment pairs) was 
96.1%, whereas the average coverage by HSPs was 
93.5%. The species yielding the highest score was H. 
hydrogenophilus. The five most frequent keywords 
within the labels of environmental samples which 

yielded hits were 'hot' (6.5%), 'yellowstone' (5.8%), 
'spring' (5.6%), 'national/park' (5.4%) and 
'microbial' (3.9%). These keywords corroborate 
with what is known from the ecology and physiology 
of strain TK-6T [1,2]. The two most frequent key-
words within the labels of environmental samples 
which yielded hits of a higher score than the highest 
scoring species were 'aquificales' (34.1%) and 
'hot/spring' (32.9%). 
Figure 1 shows the phylogenetic neighborhood of 
H. thermophilus TK-6T in a 16S rRNA based tree. 
The sequence of the single 16S rRNA gene in the 
genome differs by one nucleotide from the pre-
viously published 16S rRNA sequence (Z30214), 
which contains 31 ambiguous base calls. 
Cells of strain TK-6T are Gram-negative, nonmotile 
straight rods of 0.3 to 0.5 µm by 2.0 to 3.0 µm oc-
curring singly or in pairs [1] (Figure 2 and Table 1). 
Molecular oxygen is used as an electron acceptor 
for respiratory metabolism [1]. However, strain 
TK-6T can grow anaerobically on nitrate as an elec-
tron acceptor when molecular hydrogen is used as 
an energy source [33]. Strain TK-6T does not form 
colonies on agar plates, but does form colonies on 
plates solidified with GELRITE, a polysaccharide 
produced by Pseudomonas species [34]. The optim-
al temperature for autotrophic growth on H2-O2-
CO2 was between 70ºC and 75°C, no growth being 
observed at 37°C or 80°C [1]. A neutral pH 7.2 was 
suitable for growth of the strain TK-6T [1]. One im-
portant feature of the strain TK-6T is a generation 
time that is faster by about 1h compared to other 
autotrophs, suggesting that this strain has an effi-
cient hydrogen-oxidizing ability [35]. No spore 
formation was observed [1]. Strain TK-6T assimi-
lates carbon dioxide via the reductive tricarboxylic 
acid cycle [10,36,37]. This is also true when the 
strain TK-6T grows anaerobically on nitrate [10]. 
Cytochromes b and c were found in strain TK-6T 
[1]. Interestingly, cytochrome C552 of H. thermophi-
lus TK-6T is extremely thermostable and can re-
store its conformation even after being autoclaved 
for 10 minutes at 121ºC [30]. One of the denitrifica-
tion enzymes of the strain TK-6T, cytochrome cd1 
nitrite reductase has been isolated and analyzed 
[38]. Optimum temperature for the activity of this 
enzyme was found to range between 70ºC-75ºC 
[38]. Moreover, this enzyme was found to be of the 
heme cd1-type [33]. Ammonium and nitrate were 
utilized as nitrogen sources [1,33], but not urea and 
N2. Growth was inhibited by nitrite [1]. Nitrate re-
duction and peroxidase were positive, while urease 
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was negative [1]. Strain TK-6T could not utilize any 
of the following as sole sources of energy or carbon: 
glucose, fructose, galactose, maltose, sucrose, xylose, 
raffinose, L-rhamnose, D-mannose, D-trehalose, 
mannitol, starch, formate, acetate, propionate, pyru-
vate, succinate, malate, citrate, fumarate, maleate, 
glycolate, gluconate, DL-lactate, α-ketoglutarate, p-
hydroxybenzoate, DL-polyhydroxybutyrate, betaine, 
methanol, ethanol, methylamine, dimethylamine, 
trimethylamine, glycine, L-glutamate, L-aspartate, L-
serine, L-leucine, L-valine, L-tryptophan, L-histidine, 
L-alanine, L-lysine, L-proline, L-arginine, nutrient 
broth, yeast extract-malt extract medium, and brain 
heart infusion [1]. Strain TK-6T showed no growth 
under an atmosphere containing 90% CO, 5% CO2, 
and 5% O2 [1]. No heterotrophic growth was ob-
served in the presence of glucose, fructose, pyru-
vate, citrate, α-ketoglutarate, succinate, fumarate, 
malate, acetate, and ethanol with and without yeast 
extract or carbon dioxide at different concentra-
tions (0.02, 0.05, and 0.1% wt/vol) [1]. H. thermo-
philus TK-6T was recently reported to grow on for-
mate and formamide [39]. Malate dehydrogenase, 
isocitrate dehydrogenase and glucose-6-phosphate 
isomerase were also detected in the strain TK-6T 
[1]. Enzymes of the reductive tricarboxylic acid 
cycle and some related enzymes in cell-free ex-
tracts of strain TK-6T were detected and their spe-
cific activities were found to increase with the tem-
perature, the enzymes being more active at 70°C, as 
compared to lower temperatures (50°C and 30°C) 
[10]. In H. thermophilus, ATP-dependent citrate 
cleavage is catalyzed by two enzymes, citryl-CoA 
synthetase and citryl-CoA lyase, which catalyze 
ATP-dependent formation of citryl-CoA from ci-
trate and CoA and the subsequent cleavage of ci-
tryl-CoA into acetyl-CoA and oxaloacetate, respec-
tively [40,41]. The biochemistry of key enzymes of 
the reductive tricarboxylic acid cycle, such as fuma-
rate reductase, ATP citrate lyase, pyruvate:ferredoxin 
oxidoreductase  and 2-oxoglutarate:ferredoxin oxi-
doreductase, have been studied in some detail in 
strain TK-6T [10,37,42]. Strain TK-6T lacks some 
important enzyme activities in the central carbon 
metabolic pathways [43]. For example, activities of 
phosphofructokinase, pyruvate kinase, 6-phospho 
gluconate aldolase, which are key enzymes of the 
Embden-Meyerhof and the Entner-Doudoroff 
pathways, and activity of α-ketoglutarate dehydro-
genase of the tricarboxylic acid cycle could not be 
detected in cell-free extracts of strain TK-6T [43]. 
This is in accord with the findings from the genome 
sequencing where none of these genes were found 

in the genome. These metabolic deficits were con-
sidered to be partially responsible for the obligate 
autotrophy of the strain TK-6T [44]. Activities of 
phosphoenolpyruvate synthetase and pyruvate 
carboxylase were also detected [10]. The reverse 
reactions (dehydrogenase reactions) of α-
ketoglutarate synthase and pyruvate synthase 
could be detected by using methyl viologen as an 
electron acceptor [10]. Cloning experiments of the 
hydrogenase genes from the strain TK-6T revealed 
that this strain has at least four clusters of hydro-
genase genes [35]. Strain TK-6T assimilates ammo-
nium using glutamine synthetase (GS type I) [45]. 
Anisomycin, cycloheximide and emetine (100 
µg/ml each) do not inhibit protein biosynthesis and 
therefore growth of strain TK-6T [46]. But the inhi-
bitors of  protein biosynthesis streptomycin, kana-
mycin, chloramphenicol, erythromycin, oleando-
mycin and virginiamycin were found to suppress 
growth of strain TK-6T at concentrations below 20 
µg/ml [46]. No growth was observed when cell wall 
synthesis inhibitors were used, (D-cycloserine, fos-
fomycin, cephalosporin C, penicillin G, oxacillin and 
ampicillin) at the concentration even below 20 
µg/ml [46]. Strain TK-6T could grow in the pres-
ence of monensin, lasalosid, valinomycin, nonactin 
and polymyxin B [46]. 

Chemotaxonomy 
The major cellular fatty acids found in strain TK-6T 
were C18:0 and C20:1 [1,47]. These two fatty acids 
comprised about 80% of the total cellular fatty acids 
[1,47]. The minor components detected were C16:0, 
C16:1 and C18:1. C14:0 acids (indicative of the presence 
of a lipopolysaccharide) and a C21:0 cyclopropane 
acid, representing less than 10% of the total cellular 
fatty acids [1,47]. The detailed fatty acid composi-
tion of the strain TK-6T is available in [27] and [47]. 
The main respiratory lipoquinone is an unusual sul-
fur-containing quinone, a 2-methylthio-3-VI, VII-
tetrahydroheptaprenyl-1,4-naphthoquinone (i.e., 
methionaquinone 7, MTK-7) [48,49]. Strain TK-6T 
contains glycerol-ether basedlipids, as well as acyl 
glycerides [47]. It should be noted that the ether li-
pids are not of the type found in members of the 
Archaea, since the side chains are alkyl straight 
chain and not isoprenoid. The presence of glycerol 
monoethers (GME) (1.2 µ mol/g dwt) is a characte-
ristic feature of the strain TK-6T, the main one being 
GME-18:0 (82.7% wt) [27,47]. GME-20:1 (11.1% 
wt), GME-20:0 (3.5 wt), and GME-18:1 (2.7% wt) 
were also detected in strain TK-6T [27,47]. No glyce-
rol diether (GDE) was detected [27,47].  
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Investigations of the polar lipids has shown that the 
polar lipids comprise phosphatidylglycerol, phos-
phatidylinositol, phosphatidylaminopentantetrol 
and a small amount of an unidentified phospholi-
pid. The sum of these chemotaxomonic features 
appear to be characteristic of members of the ge-
nus Hydrogenobacter, with features such as the 
presence of methionaquinone, a polar lipid pattern 

containing phosphatidylglycerol, phosphatidylino-
sitol and phosphatidylaminopentantetrol and the 
presence of C18:0 and C20:1 fatty acids being tax-
onomic and evolutionary markers for at least 
members of the genera Hydrogenobacter, Hydro-
genobaculum, Aquifex and Thermoncrinis. This has 
been discussed in a previous SIGS paper [50]. 

 

 
Figure 1. Phylogenetic tree highlighting the position of H. thermophilus TK-6T relative to the type 
strains of the other species within the genus and to the type strains of the other genera within the 
family Aquificaceae. The trees were inferred from 1,423 aligned characters [14,15] of the 16S 
rRNA gene sequence under the maximum likelihood criterion [16] and rooted in accordance 
with the current taxonomy [17]. The branches are scaled in terms of the expected number of 
substitutions per site. Numbers above branches are support values from 1,000 bootstrap repli-
cates [18] if larger than 60%. Lineages with type strain genome sequencing projects registered in 
GOLD [19] are shown in blue, published genomes in bold [12,20,21]. 

 
Figure 2. Scanning electron micrograph of H. thermophilus TK-6T 
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Table 1. Classification and general features of H. thermophilus TK-6T according to the MIGS recommendations [22] 
MIGS ID Property Term Evidence code 

 

Current classification 

Domain Bacteria TAS [23] 

Phylum Aquificae TAS [24,25] 

Class Aquificae TAS [24,26] 

Order Aquificales TAS [24,27,28] 

Family Aquificaceae TAS [24,29] 

Genus Hydrogenobacter TAS [1] 

Species Hydrogenobacter thermophilus TAS [1] 

Type strain TK-6 TAS [1] 

 Gram stain negative TAS [1] 

 Cell shape straight rods TAS [1] 

 Motility non-motile TAS [1] 

 Sporulation no TAS [1] 

 Temperature range 50°C–78°C TAS [30] 

 Optimum temperature 70°C-75°C TAS [1] 

 Salinity not reported NAS 

MIGS-22 Oxygen requirement aerobic TAS [1] 

 Carbon source CO2 TAS [1] 

 Energy source H2, thiosulfate, obligate chemolithoautotrophic TAS [1] 

MIGS-6 Habitat soil near hot spring TAS [1] 

MIGS-15 Biotic relationship free living NAS 

MIGS-14 Pathogenicity not reported NAS 

 Biosafety level 1 TAS [31] 

 Isolation hot spring TAS [1] 

MIGS-4 Geographic location Izu peninsula, Japan TAS [1,30] 

MIGS-5 Sample collection time 1980 or before TAS [1,2] 
MIGS-4.1 
 MIGS-4.2 

Latitude 
Longitude 

approx. 34.9 
138.9 

NAS 

MIGS-4.3 Depth not reported  
MIGS-4.4 Altitude not reported  

Evidence codes - IDA: Inferred from Direct Assay (first time in publication); TAS: Traceable Author Statement 
(i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for 
the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). 
These evidence codes are from of the Gene Ontology project [32]. If the evidence code is IDA, then the prop-
erty was directly observed by one of the authors or an expert mentioned in the acknowledgements. 

 

Genome sequencing and annotation 
Genome project history 
This organism was selected for sequencing on the 
basis of its phylogenetic position [51], and is part 
of the Genomic Encyclopedia of Bacteria and Arc-
haea project [52]. The genome project is depo-
sited in the Genome On Line Database [19] and the 
complete genome sequence is deposited in Gen-
Bank. Sequencing, finishing and annotation were 
performed by the DOE Joint Genome Institute 
(JGI). A summary of the project information is 
shown in Table 2. 

Growth conditions and DNA isolation 
H. thermophilus TK-6T, DSM 6534, was grown in 
DSMZ medium 533 (Thermophilic hydrogen bac-
teria medium) [53] with 5% oxygen at 72°C. DNA 
was isolated from 0.5-1 g of cell paste using Qia-
gen Genomic 500 DNA Kit (Qiagen, Hilden, Ger-
many) following the standard protocol as recom-
mended by the manufacturer. DNA is available 
through the DNA Bank Network [54]. 

http://standardsingenomics.org/�


Hydrogenobacter thermophilus type strain (TK-6T) 

136 Standards in Genomic Sciences 

Table 2. Genome sequencing project information 
MIGS ID Property Term 
MIGS-31 Finishing quality Finished 

MIGS-28 Libraries used 
One 454 pyrosequence standard library, one 454 PE (20kb insert size) 
and one Illumina standard library 

MIGS-29 Sequencing platforms 454 GS FLX Titanium, Illumina GAii 
MIGS-31.2 Sequencing coverage 82.1× pyrosequence, 264.4 × Illumina 
MIGS-30 Assemblers Newbler version 2.3-PreRelease-10-21-2009-gcc-4.1.2, phrap 
MIGS-32 Gene calling method Prodigal 1.4, GenePRIMP 
 INSDC ID CP002221 
 Genbank Date of Release October 15, 2010 
 GOLD ID Gc01411 
 NCBI project ID 41547 
 Database: IMG-GEBA 2502957034 
MIGS-13 Source material identifier DSM 6534 
 Project relevance Tree of Life, GEBA 

 

Genome sequencing and assembly 
The genome was sequenced using a combination of 
Illumina and 454 sequencing platforms. All general 
aspects of library construction and sequencing can 
be found at the JGI website [55]. Pyrosequencing 
reads were assembled using the Newbler assemb-
ler version 2.3-PreRelease-10-21-2009-gcc-4.1.2-
threads (Roche). The initial Newbler assembly con-
sisted of 19 contigs in one scaffold which was con-
verted into a phrap assembly by making fake reads 
from the consensus, collecting the read pairs in the 
454 paired end library. Illumina GAii sequencing 
data (449.5 Mb) was assembled with Velvet [56] 
and the consensus sequences were shredded into 
1.5 kb overlapped fake reads and assembled to-
gether with the 454 data. The 454 draft assembly 
was based on 143.2 MB 454 draft data and all of the 
454 paired end data. Newbler parameters are -
consed -a 50 -l 350 -g -m -ml 20. The 
Phred/Phrap/Consed software package [57] was 
used for sequence assembly and quality assess-
ment in the subsequent finishing process. After the 
shotgun stage, reads were assembled with parallel 
phrap (High Performance Software, LLC). Possible 
mis-assemblies were corrected with gapResolution 
[55], Dupfinisher, or sequencing cloned bridging 
PCR fragments with subcloning or transposon 
bombing (Epicentre Biotechnologies, Madison, WI) 
[58]. Gaps between contigs were closed by editing 
in Consed, by PCR and by Bubble PCR primer walks 
(J.-F.Chang, unpublished). A total of 24 additional 
Sanger reactions were necessary to close gaps and 
to raise the quality of the finished sequence. Illu-
mina reads were also used to correct potential 
base errors and increase consensus quality using a 

software Polisher developed at JGI [59]. The error 
rate of the completed genome sequence is less 
than 1 in 100,000. Together, the combination of the 
Illumina and 454 sequencing platforms provided 
346.5 × coverage of the genome. Final assembly 
contains 454,097 pyrosequence and 12,484,847 
Illumina reads. 

Genome annotation 
Genes were identified using Prodigal [60] as part 
of the Oak Ridge National Laboratory genome an-
notation pipeline, followed by a round of manual 
curation using the JGI GenePRIMP pipeline [61]. 
The predicted CDSs were translated and used to 
search the National Center for Biotechnology In-
formation (NCBI) nonredundant database, Uni-
Prot, TIGRFam, Pfam, PRIAM, KEGG, COG, and In-
terPro databases. Additional gene prediction anal-
ysis and functional annotation was performed 
within the Integrated Microbial Genomes - Expert 
Review (IMG-ER) platform [62]. 

Genome properties 
The genome consists of a 1,742,932 bp long chro-
mosome with a 44.0% GC content (Table 3 and 
Figure 3). Of the 1,948 genes predicted, 1,899 
were protein-coding genes, and 49 RNAs; thirty 
pseudogenes were also identified. The majority of 
the protein-coding genes (97.5%) were assigned 
with a putative function while the remaining ones 
were annotated as hypothetical proteins. The dis-
tribution of genes into COGs functional categories 
is presented in Table 4. 
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Table 3. Genome Statistics 
Attribute Value % of Total 
Genome size (bp) 1,742,932 100.00% 
DNA coding region (bp) 1,666,175 95.60% 
DNA G+C content (bp) 766,905 44.00% 
Number of replicons 1  
Extrachromosomal elements 0  
Total genes 1,948 100.00% 
RNA genes 49 2.52% 
rRNA operons 1  
Protein-coding genes 1,899 97.48% 
Pseudo genes 30 1.54% 
Genes with function prediction 1,361 69.87% 
Genes in paralog clusters 183 9.39% 
Genes assigned to COGs 1,441 73.97% 
Genes assigned Pfam domains 1,501 77.05% 
Genes with signal peptides 287 14.73% 
Genes with transmembrane helices 381 19.56% 
CRISPR repeats 1  

Insights into the genome 
While the sequencing of the genome described in 
this paper was underway, Arai et al. from Univer-
sity of Tokyo published the first version of the H. 
thermophilus TK-6T genome [19, AP011112]. We 
take the opportunity to compare the two com-
pleted genome sequences, because the history of 
the two strains designated TK-6T might differ 
since the original isolation of the strain by Kawa-
sumu et al. [1], more than a 25 years ago. The first 
of the two genomes was published by a team of 
researchers located at the same place where the 
strain was originally analyzed, with Yasuo Igara-
shi participating in both, the original description 
of the strain and the genome analysis. According 
to personal information by Dr. Arai Hiroyuki (lead 
author in [19]), the genome was sequenced from 
clone and fosmid libraries generated by a strain 
subcultured in the lab since the time of the initial 
isolation. A fresh culture of the strain from JCM 
was used for final gap filling and error checking. 
The DSM 6534 version of the genome was gener-
ated from cryopreserved material, which DSMZ 
received in 1991 from Tohru Kodama of Universi-
ty of Tokyo, and the strain was preserved by sto-
rage in liquid nitrogen since it was accessed. 
A comparison of the two TK-6T genomes using the 
genome-to-genome-distance calculation [63-65] in 
conjunction with NCBI-BLASTN yielded a distance 
of 0.0001 with formula 1, 0.0100 with formula 2 

and 0.0101 with formula 3. That is, 99.99% of the 
total genome length was covered by HSPs, 99.0% of 
the positions within the HSPs held identical bases, 
and 98.99% of the total genome length corres-
ponded to such identical base pairs within HSPs. 
The synteny of the two TK-6T genome sequences 
based on a DNA blot was confirmed (data not 
shown), whereas Table 5 provides a comparison of 
the basic genome statistics. 

The Japanese strain has 1,868 (out of 1,893) pro-
tein coding genes identical to the DSMZ strain 
which is 98.7% of the genome. This means there 
are 25 genes in the Japanese strain that are not in 
the DSMZ strain, all except L34P are hypothetical 
genes. L34P is however present in the version of 
the genome as presented in this paper, but was 
missed from the ORF calling/annotation. We also 
identified 24 genes in the genome sequenced from 
the DSMZ strain that were missing in the Arai et al. 
strain. Also most of these were again hypothetical 
genes. The abundance profiles for both genomes 
were almost identical, with glycosyltransferase 
(COG0438) being the most frequent gene in both 
versions (eleven copies), followed by seven copies 
of an outer membrane protein (COG1538), each. 
The DSM 6534 genome contains seven copies of 
transposase IS605 OrfB (COG0675), whereas 
Tokyo contains five copies of it. 
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Figure 3. Graphical circular map of the genome. From outside to the center: Genes on forward strand (color 
by COG categories), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, rRNAs red, 
other RNAs black), GC content, GC skew. 

 
The DSM 6534 version of the genome also contains 
more copies of cation transport ATPase (COG0474, 
4 vs. 2), nitrogenase molybdenum-iron protein, al-
pha and beta chains (COG2710, 4 vs. 2), 
acetyl/propionyl-CoA carboxylase, alpha subunit 
(COG4779, 4 vs. 3), Fe-S oxidoreductases 
(GCO0474, 3 vs. 2), catabolite gene activator and 
regulatory subunit of cAMP-dependent protein ki-
nases (COG0664, 3 vs. 2), cation transport ATPase 
(COG2217, 3 vs. 2), DNA modification methylase 
(COG0862, 2 vs. 1), hemolysins and related proteins 

containing CBS domains (COG1253, 2 vs. 1). Phos-
phoketolase (COG3957), an uncharacterized MobA-
related protein (COG2068) and an uncharacterized 
conserved protein (COG4121) were identified in 
one copy, each, in the DSM 6534 genome, but ab-
sent in the U Tokyo version. The U Tokyo version 
contains more copies of selenocysteine-containing 
anaerobic dehydrogenases, (COG0243, 5 vs. 1), as 
well as,1-acyl-sn-glycerol-3-phosphate acyltransfe-
rase (COG02043) and K+-transporting ATPase, A 
chain (COG2060, 2 vs. 1, each). 
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Table 4. Number of genes associated with the general COG functional categories 
Code value %age Description 
J 134 8.6 Translation, ribosomal structure and biogenesis 
A 0 0.0 RNA processing and modification 
K 52 3.3 Transcription 
L 85 5.4 Replication, recombination and repair 
B 2 0.1 Chromatin structure and dynamics 
D 19 1.3 Cell cycle control, cell division, chromosome partitioning 
Y 0 0.0 Nuclear structure 
V 21 1.3 Defense mechanisms 
T 53 3.4 Signal transduction mechanisms 
M 128 8.2 Cell wall/membrane/envelope biogenesis 
N 23 1.5 Cell motility 
Z 1 0.0 Cytoskeleton 
W 0 0.0 Extracellular structures 
U 56 3.6 Intracellular trafficking and secretion, and vesicular transport 
O 74 4.7 Posttranslational modification, protein turnover, chaperones 
C 182 11.6 Energy production and conversion 
G 58 3.7 Carbohydrate transport and metabolism 
E 118 7.5 Amino acid transport and metabolism 
F 52 3.3 Nucleotide transport and metabolism 
H 107 6.8 Coenzyme transport and metabolism 
I 43 2.7 Lipid transport and metabolism 
P 78 5.0 Inorganic ion transport and metabolism 
Q 15 1.0 Secondary metabolites biosynthesis, transport and catabolism 
R 167 10.7 General function prediction only 
S 100 6.4 Function unknown 
- 507 26.3 Not in COGs 

 

Table 5. Comparison of Genome Statistics 
Attribute DSM 6534 U of Tokyo difference 
Genome size (bp) 1,742,932 1,744,135 +1,203 
DNA coding region (bp) 1,666,175 1,669,712 +3,537 
DNA G+C content (bp) 766,905 766,984 +79 
Number of replicons 1 1 1 
Extrachromosomal elements 0 0 0 
Total genes 1,948 1,941 -7 
RNA genes 49 48 -1 
rRNA operons 1 1 1 
Protein-coding genes 1,899 1,893 -6 
Pseudo genes 30 0 -30 
Genes with function prediction 1,361 1,349 -12 
Genes in paralog clusters 183 175 -8 
Genes assigned to COGs 1,441 1,430 -11 
Genes assigned Pfam domains 1,501 1,489 -12 
Genes with signal peptides 287 528 +241 
Genes with transmembrane helices 381 385 +4 
CRISPR repeats 1 2 +1 
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