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Abstract 

Background Bacillus subtilis is well known for promoting plant growth and reducing abiotic and biotic stresses. 
Mutant gene-defective models can be created to understand important traits associated with rhizosphere fitness. 
This study aimed to analyze the role of exopolymeric genes in modulating tomato rhizosphere microbiome assembly 
under a gradient of soil microbiome diversities using the B. subtilis wild-type strain UD1022 and its corresponding 
mutant strain  UD1022eps−TasA, which is defective in exopolysaccharide (EPS) and TasA protein production.

Results qPCR revealed that the B. subtilis  UD1022eps−TasA− strain has a diminished capacity to colonize tomato roots 
in soils with diluted microbial diversity. The analysis of bacterial β-diversity revealed significant differences in bacte-
rial and fungal community structures following inoculation with either the wild-type or mutant B. subtilis strains. The 
Verrucomicrobiota, Patescibacteria, and Nitrospirota phyla were more enriched with the wild-type strain inoculation 
than with the mutant inoculation. Co-occurrence analysis revealed that when the mutant was inoculated in tomato, 
the rhizosphere microbial community exhibited a lower level of modularity, fewer nodes, and fewer communities 
compared to communities inoculated with wild-type B. subtilis.

Conclusion This study advances our understanding of the EPS and TasA genes, which are not only important for root 
colonization but also play a significant role in shaping rhizosphere microbiome assembly. Future research should con-
centrate on specific microbiome genetic traits and their implications for rhizosphere colonization, coupled with rhizo-
sphere microbiome modulation. These efforts will be crucial for optimizing PGPR-based approaches in agriculture.
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Background
The rhizosphere microbiome is intricately linked with the 
host plant [1–3] and is primarily modulated according to 
the host genotype [4–6] and, consequently, by the plant 
exudate profile [7–9]. In turn, the rhizosphere microbial 
community provides readily available nutrients for plant 
absorption, along with other molecules such as phyto-
hormones and secondary metabolites, which enhance 
host development and health [10, 11].

The symbiotic relationships between the rhizosphere 
microbiome and plants can also lead to intricate con-
nections within microbial communities, ultimately ben-
efiting the host plant [12]. For instance, the Bacillus 
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subtilis strain UD1022 can colonize Arabidopsis thali-
ana roots, establishing mutualistic interactions [13]. As 
the host plant secretes fixed carbon through root exu-
dates to nourish the bacteria, B. subtilis in turn facili-
tates rhizobacterium colonization, providing the plant 
with growth-promoting traits [13]. B. subtilis is one of 
the most studied gram-positive plant growth-promoting 
rhizobacteria (PGPR) [14, 15], and it has great agricul-
tural and ecological importance [16–19]. Their ability to 
induce plant development and protect against pathogens 
and abiotic stresses has been widely explored [20–25]. B. 
subtilis promoted plant growth in tomato [25], cucum-
ber [26], and wheat [27] and conferred resistance against 
the soil-borne pathogen Rhizoctonia solani in cotton 
[28] and Pseudomonas syringae pv. tomato in Arabidop-
sis [29]. Martins et  al. [20] and Allard-Massicotte et  al. 
[13] showed that B. subtilis and B. amyloliquefaciens can 
also induce plant drought tolerance by forming biofilms 
in bean and Arabidopsis roots through bacterial exopoly-
saccharide (EPS) secretion. Most importantly, various 
B. subtilis strains are considered generalists for multiple 
crops [25–29]. The application of plant growth-promot-
ing rhizobacteria (PGPR) in agricultural settings not only 
impacts plant performance but also affects the resident 
soil microbiome. For instance, the use of bacillus-based 
products in crops such as tobacco [30], lettuce [31], and 
strawberry [32] can increase bacterial diversity in rhizo-
sphere soils.

EPS constitute an enclosed matrix produced by micro-
bial multicellular aggregates and serve as the primary 
component of biofilms [33–35]. Along with EPS, TasA is 
a major proteinaceous component of B. subtilis biofilms 
[36–39]. In addition to affecting motility and chemot-
axis, TasA plays a role in B. subtilis rhizosphere coloniza-
tion [13, 35, 39], which provides the host plant with an 
extra barrier against potential soil-borne pathogens and 
drought tolerance [40–42]. Knocking out the ability of B. 
subtilis to form biofilms by constructing mutant strains 
is an efficient way to understand its role in plant health 
and development [35, 43–46]. For instance, Bacillus spp. 
mutated models defective in YtnP (lactonase-homolog 
protein-encoding gene) [44], EPS, and TasA protein-
encoding genes (tapA– sipW–tasA operon and bslA 
gene) [45, 46] have been employed in previous studies 
to elucidate their role in biofilm formation, interactions 
with the soil microbiome, and their efficacy in antagoniz-
ing pathogens.

Studies have reported the effects of mutant B. subti-
lis on plant growth promotion and protection, includ-
ing sporulation [44], surfactin [45], and flagellar [13, 47] 
mutants, but the effects of these mutants on rhizosphere 
microbiome assembly have not yet been properly consid-
ered. In this study, EPS and TasA double mutants of B. 

subtilis were used to investigate the impact of exopoly-
meric genes on the modulation of rhizosphere microbi-
ome assembly. The use of a mutant strain was combined 
with the dilution-to-extinction approach to assess the 
assembly of bacterial and fungal communities in the 
tomato rhizosphere under a gradient of soil microbial 
diversity.

Materials and methods
Soil microbial diversity dilution
Soil samples were collected from the "UD Fresh to You" 
farm (39°40′04.2″N 75°45′03.5″W) at the University of 
Delaware. The specific soil type used was Delanco silt 
loam, which had previously been cultivated with organic 
tomatoes and was identified through the Web Soil Sur-
vey [48]. The dilution-to-extinction method [49] was 
employed to obtain soils with the microbial diversity 
gradient used in the bioassays. Initially, 30  kg of sieved 
(< 2  mm sieve) and dried soil was divided into three 
bags, each containing 10 kg of soil. The soil in the bags 
was autoclaved four times at 120  °C and 1 atm pressure 
for 60 min. The serial dilution process involved suspend-
ing 450 g of natural soil (dry weight) in 900 mL of auto-
claved deionized water, resulting in a concentration of 
0.5 g   mL−1  (10–1 soil dilution). Subsequently, 100 mL of 
the  10–1 dilution was transferred to 900 mL of autoclaved 
deionized water to obtain  10–2 soil dilutions. This serial 
dilution process was repeated until a soil dilution of  10–6 
was reached, following the methods described by Wertz 
et  al. [50] and Souza et  al. [51]. Three dilutions were 
selected for use in the experiment:  10–1,  10–3, and  10–6, 
in addition to the natural and autoclaved soils. To obtain 
the microbial diversity gradient across treatments, pots 
with 200 g of soil received 40 mL of each soil suspension, 
 10–1,  10–3, or  10–6, and the natural and autoclaved soils 
received 40  mL of sterilized ultrapure water. Pots were 
placed in a climatized chamber set at 25 °C, with a pho-
toperiod of 12 h light and 12 h dark. The pots were incu-
bated under these conditions for six weeks, allowing the 
establishment of the microbiome before the experiment 
[52].

Bacillus subtilis strains and inoculum preparation
The B. subtilis strain  UD1022eps−TasA−, which is defec-
tive for the EPS and TasA genes, was obtained in a 
previous study [53]. Wild-type B. subtilis was culti-
vated on Luria broth (LB) agar plates, and its respec-
tive mutant was cultivated on LB supplemented with 
5  µg   mL−1 tetracycline and 1  µg   mL−1 erythromycin. 
The streaked plates were then incubated at 37  °C for 
24  h. Subsequently, individual bacterial colonies were 
transferred to LB liquid media supplemented with 
antibiotics, as was the case for the mutant strain 
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 UD1022eps−TasA−, and incubated in a shaker at 150 rpm 
for 6  h at 37  °C. After the incubation period, the B. 
subtilis cultures were washed and resuspended in 
autoclaved distilled water. Bacterial cultures were 
grown until they reached a concentration of  108 cells 
 mL−1. Seeds were disinfected by immersion in a 3% 
sodium hypochlorite solution and shaken for 30 s, fol-
lowed by thorough rinsing with ultrapure water. Sub-
sequently, the seeds were briefly soaked in 70% ethanol 
and shaken for 1  min, followed by another extensive 
rinse with ultrapure water. After disinfection, 1  g of 
tomato seeds was mixed with the bacterial suspension 
 (108 cells  g−1) and kept for 1 h in a shaker at 150 rpm 
before planting. A boost dose of 1 mL  (108 cells  mL−1) 
per plant was used on the 16th day of the experiment. 
In the control treatment, the seeds or plants were 
treated with autoclaved distilled water.

Tomato bioassay and experimental design
The plant bioassay used the tomato cultivar “Amish 
Paste” with four different treatments: (i) plants inoculated 
with UD1022, (ii) plants inoculated with  UD1022eps−
TasA−, (iii) non-inoculated plants (control), and (iv) pots 
without plants (bulk soil) (Fig. 1A). Each treatment was 
performed using five different levels of soil microbial 
diversity: natural soil,  10–1 dilution,  10–3 dilution,  10–6 
dilution, and autoclaved soil. Thus, considering four 
treatments, soils with five levels of microbial diversity, 
and five replicates, 100 pots were used in the experiment. 
Each pot (8 × 6.7 cm) contained 200 g of soil (dry mass), 
and the plants received at least 10 tomato seeds, which 
were thinned after five days to leave just one plant per 
pot. The experiment was conducted using a randomized 
complete block design. Thirty days after germination, 
the entire root system was harvested by carefully remov-
ing the plants from the pots and gently shaking them 

Fig. 1 Plant bioassay experimental design and timeline. A Each treatment, including plants inoculated with UD1022, plants inoculated 
with  UD1022eps−TasA− and non-inoculated plants (control), was cultivated in soils with five different levels of microbial diversity: natural soil,  10–1 
dilution,  10–3 dilution,  10–6 dilution, and autoclaved soil. Pots without plants (bulk soil) were also used as a control. B Bioassay timeline showing 
bacterial inoculation, sampling, and analyses
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to remove excess soil from the root system. The root-
adhered soil (i.e., rhizospheric soil) was collected, trans-
ferred to 1.5 mL microtubes, and stored at -20 °C before 
downstream analyses. Various plant growth parameters, 
including plant height, root fresh and dry masses, and 
shoot fresh and dry masses, were measured and collected 
for further data analyses (Fig. 1B).

Soil microbiome genomic DNA extraction 
and metataxonomic analysis
Rhizosphere and bulk soil samples were subjected to 
DNA extraction using the DNeasy PowerSoil® Kit (QIA-
GEN) according to the manufacturer’s instructions. The 
quality and concentration of the extracted DNA samples 
were evaluated using a NanoDrop spectrophotometer. In 
addition, to verify the integrity of the DNA, electrophore-
sis was performed on a 1.5% agarose gel at 80 V/400 mA 
for 45 min. To ensure sample DNA concentrations, quan-
tification was performed using a QUBIT® fluorometer.

DNA samples from all five replicates per treatment 
(a total of 100 samples) were subjected to amplicon 
sequencing using the Illumina MiSeq platform at the 
Delaware Biotechnology Institute in Newark, Delaware, 
USA. Sequencing of the V4 region of the bacterial 16S 
rRNA gene was performed using the following primer 
pairs: 515F (5′-GTG YCA GCMGCC GCG GTAA-3′) [54] 
and 806R (5′- GGA CTA CNVGGG TWT CTAAT-3′) 
[55], and sequencing of the ITS1 region of the fungal ITS 
gene was performed using the following primer pairs: 
ITS1f (5′-CTT GGT CAT TTA GAG GAA GTAA-3′) and 
ITS2 (5′-GCT GCG TTC TTC ATC GAT GC-3′) [56].

Rhizosphere and bulk soil Bacillus quantification using 
quantitative polymerase chain reaction (qPCR)
Initially, B. subtilis UD1022 genomic DNA was used to 
prepare a qPCR standard curve. Total DNA was extracted 
from B. subtilis strain UD1022 liquid cultures using the 
DNeasy® UltraClean® Microbial Kit (QIAGEN) accord-
ing to the manufacturer’s instructions. The quality of the 
total extracted DNA was assessed using a NanoDrop® 
ND-2000 Spectrophotometer (Thermo Fisher Scientific, 
Wilmington, DE, USA). DNA was quantified using a 
QUBIT® 2.0 fluorometry system (Thermo Fisher Scien-
tific, Wilmington, DE, USA). DNA was stored at -20  °C 
for subsequent analyses.

To prepare the standard curve, serial dilutions of B. 
subtilis UD1022 genomic DNA were prepared at a 1:10 
ratio. The starting concentration of genomic DNA used 
for the dilutions was standardized at 10 ng μL−1. The tar-
get DNA was amplified using primers designed for the 
gyrB gene, which encodes DNA gyrase subunit B. The 
primers gyrB_5234_F (5′-CGG TCG TAA ACG CAC TAT 
C-3′) and gyrB-5391_R (5′-AGG GTC CGG GAC AAA 

ATG TGTCG-3′) were adapted from Xie et al. [57]. Each 
qPCR reaction had a final volume of 10 μL and included 
the following components: 5  μL of PerfeCTa SYBR® 
Green SuperMix (Quantabio, Baverly, MA, USA), 0.2 μL 
of each primer (10  mM), 1  μL of template DNA, and 
3.6  μL of ultrapure water. The reaction conditions were 
adapted from Xie et al. [54] and involved an initial dena-
turation step at 95  °C for 10 min, followed by 40 cycles 
of denaturation at 95  °C for 30 s, annealing at 61  °C for 
35 s, and extension at 72 °C for 40 s. Melting curve col-
lection was performed at the end of the cycling program. 
Distilled water was used as the non-template control. The 
qPCR assay was performed in triplicate for each dilution 
to ensure the accuracy and reproducibility of the results. 
The standard curve served as a reference to quantify the 
abundance of Bacillus in soil samples by interpolating 
their Ct values onto the curve and then converting to 
the number of gyrB per gram of soil. For Bacillus subtilis 
quantification in the rhizosphere and bulk soil samples, 
qPCR was performed with standard curves under the 
same conditions described above.

Data processing and statistical analyses
Bioassay data, including plant height, shoot and root dry 
mass, and qPCR (number of copies of the gyrB gene), 
were compared using the Scott–Knott test (P < 0.05). 
To generate amplicon sequence variants (ASVs) from 
both genes, 16S rRNA and ITS, the raw data were pro-
cessed using Dada2 version 1.21.0 [58]. The primers were 
removed using Cutadapt version 3.4. [59] Quality control 
was performed and reads with low quality (Q20 or lower) 
were discarded, followed by taxonomic assignment using 
the Silva (v. 138.1) [60, 61] and UNITE (v. 9.0) databases 
[62–64]. To assess α-diversity, the Chao1 and Shannon 
indices were calculated. β-diversity was assessed using 
the Bray‒Curtis distance. Principal coordinate analysis 
(PCoA) was employed to visualize the similarity matrix 
among various soil diversity dilutions and treatments. In 
both analyses, rarefied and normalized data were used. 
The significance and effect size β-diversity were deter-
mined using the vegan package (v. 2.6-4) through per-
mutation-based analysis (MANOVA) with the "adonis()" 
function [65]. To identify differentially abundant taxa 
among the treatment groups, ANOVA-like differential 
expression analysis (ALDEx2) [66] was performed using 
the "run_aldex()" function from the microbiomeMarker 
package (v. 1.28.1) [67]. In addition, a co-occurrence 
network analysis was performed using the PhyloSmith 
package (v. 1.0.6) [68] based on Spearman’s pairwise cor-
relation. To mitigate the influence of rare ASVs, ASVs 
occurring fewer than 20 times in each treatment with 
a relative abundance greater than 30% were excluded. 
Significant interactions were identified using Spearman 
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pairwise correlations, with p-values less than 0.001 indi-
cating robust associations. The nature of the co-occur-
rence relationships, whether negative or positive, was 
determined based on the strength of the correlation. In 
the network, each ASV represents a node, and the edges 
represent the correlations among the ASVs. The network 
layout was generated using the Fruchterman-Reingold 
algorithm in Gephi software (v. 0.10) [69].

Results
Quantification of Bacillus subtilis in the tomato rhizosphere
Quantitative real-time PCR (qPCR) was performed to 
quantify the abundance of B. subtilis gyrB gene copies in 
the rhizosphere and bulk soils. In natural soil, a greater 
amount of B. subtilis gyrB was detected in the treat-
ment group inoculated with the  UD1022eps−TasA− strain 
(Fig. 2A). At  10–1,  10–3, and autoclaved soil dilutions, B. 

Fig. 2 Boxplot of the gyrB gene (DNA gyrase subunit B coding gene) and qPCR quantification of B. subtilis. A Natural soil. B Soil dilution  10–1. C Soil 
dilution  10–3. D Soil dilution  10–6. E Autoclaved soil. Bulk soil = non-inoculated soil; Control = non-inoculated plants; UD1022 = plants inoculated 
with wild-type B. subtilis; and  UD1022eps−TasA− = plants inoculated with mutant B. subtilis. The Scott–Knott test for pairwise comparisons of means 
was performed considering a 95% familywise confidence level (P < 0.05). * Indicates significant differences between treatments
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subtilis UD1022 was more abundant in the wild-type soil 
than in the other treatments (Fig. 2BCE).

Inoculation of Bacillus subtilis strains and plant 
performance
Significant differences in plant growth were observed 
for root dry mass with Bacillus inoculation (Fig.  3). 
According to pairwise comparisons, compared with 
non-inoculated plants (controls), tomato plants inocu-
lated with the mutant strain  UD1022eps−TasA− showed 
a reduction in root dry mass when grown in natural 

soil (Fig.  3A) or at a soil dilution of  10–3 (Fig.  3C). At 
a soil dilution of  10–3, plants inoculated with the wild-
type strain UD1022 showed significantly increased 
root growth compared with plants inoculated with the 
mutant strain (Fig.  3C). No differences were observed 
across treatments for plant height (Additional file  1: 
Figure S1A to E) or shoot dry mass (Additional file  1: 
Figure S1F to G). Within each treatment, plants gener-
ally grew better in soils with diluted microbial diversity 
(Additional file 1: Figure S2).

Fig. 3 Boxplot of the root dry mass of tomato plants 30 days after germination. A Natural soil; B Soil dilution  10–1; C Soil dilution  10–3; D Soil dilution 
 10–6; and E Autoclaved soil. Control = non-inoculated plants; UD1022 = plants inoculated with wild-type B. subtilis; and  UD1022eps−TasA− = plants 
inoculated with mutant B. subtilis. The Scott–Knott test for pairwise comparisons of means was performed considering a 95% familywise confidence 
level (P < 0.05). Asterisks (*) indicate significant differences between treatments
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Impact of the Bacillus subtilis strain UD1022 on rhizosphere 
microbiome assembly
The bacterial community in natural soils was domi-
nated by Bacillus and Pseudarthrobacter in non-inoc-
ulated or inoculated soils, respectively, with strain 
UD1022 (Fig. 4A). These two bacterial taxa decreased in 

relative abundance in soils with diluted microbial diver-
sity (Fig.  4A). Bacillus inoculation changed the rela-
tive abundance of specific bacterial and fungal groups 
in the tomato rhizosphere. For example, inoculation 
with strain UD1022 increased the relative abundance of 
Pseudarthrobacter in natural soil and Chthoniobacter 

Fig. 4 Composition of bacterial and fungal communities in the tomato rhizosphere. A Relative abundance of bacteria and fungal genera 
across soils with a microbial diversity gradient. NS = natural soil, D1 = soil dilution  10–1, D3 = soil dilution  10–3, D6 = soil dilution  10–6, 
and AS = autoclaved soil. B Venn diagram of bacterial and fungal taxa. Control = non-inoculated plant; UD1022 = plants inoculated with wild-type B. 
subtilis 
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in autoclaved soil (Fig.  4A). Twelve bacterial taxa were 
exclusively found in the rhizosphere of plants inoculated 
with the UD1022 strain (Fig.  4B), including Mucilagini-
bacter spp. ASV-0058, Curtobacterium spp. ASV-0097, 
Kaistia spp. ASV-0098, Sumerlaea spp. ASV-0135, 
Nocardioides spp. ASV-0181, and Methylorosula spp. 
ASV-0216 (Fig. 4B).

The fungal community was dominated by Clonos-
tachys in natural soils inoculated with or without strain 
UD1022 (Fig. 4A). In soils with diluted microbial diver-
sity, the communities were dominated by Trichoderma 
and Fusarium (Fig. 4A). Moreover, inoculation with the 
UD1022 strain significantly increased the relative abun-
dance of Talaromyces at a dilution of  10–3 (Fig. 4A). Com-
pared with that in the control treatment, the abundance 
of Talaromyces increased at a dilution of  10–3 when 
UD1022 was inoculated (Fig. 4A). Trichoderma ghanense 
ASV-0001, Trichoderma spp. ASV-0003, and Cryptococ-
cus laurentii ASV-0025 were exclusively detected in the 
rhizospheres of plants inoculated with strain UD1022 
(Fig. 4B).

The α-diversity analysis using the Shannon index and 
HSD test (P < 0.05) revealed significant differences in the 
bacterial community across all the soil dilutions, except 
between the  10–6 soil dilution and autoclaved soil (Addi-
tional file  1: Figure S3A). As expected, the natural soil 
exhibited the highest bacterial diversity, followed by the 
 10–1,  10–3,  10–6 dilutions, and autoclaved soil. The same 
pattern was observed in the fungal community (Addi-
tional file 1: Figure S3B).

Soil microbial diversity dilution significantly affected 
the assembly of the rhizosphere microbiome in plants 
inoculated with or without strain UD1022. The relative 
abundance of the Bacillota phylum (Additional file 1: Fig-
ure S4), particularly the Bacillus genus (Additional file 1: 
Figure S4), decreased as the soil diversity decreased. The 
abundances of the phyla Acidobacteria and Crenarchae-
ota exhibited the same pattern; they decreased with soil 
microbial dilution and were not detected in the most 
diluted or autoclaved soil (Additional file  1: Figure S4). 
Conversely, the relative abundances of the phyla Bacteroi-
dota, Planctomycetota, and Pseudomonadota increased 
with decreasing soil microbial diversity (Additional file 1: 
Figure S4).

For the fungal community, the relative abundance 
of the phyla Mortierellomycota and Basidiomycota 
decreased as the soil diversity decreased (Additional 
file 1: Figure S5). In the control treatment and in plants 
inoculated with the mutant  UD1022eps−TasA−, they were 
not detected in soil diluted  10–6 or autoclaved soil (Addi-
tional file 1: Figure S5). The phylum Chytridiomycota was 
detected only in the  10–1 dilution soil, and Rozellomycota 
was exclusively found in plants growing in natural soil 

inoculated or not inoculated with Bacillus strains (Addi-
tional file 1: Figure S5).

To better understand how inoculation influenced the 
assembly of bacterial and fungal communities in the plant 
rhizosphere under low microbial diversity, β-diversity 
measurements were separately conducted using samples 
from each dilution (Additional file 1: Figures S6 and S7). 
Significant changes in the composition of the bacterial 
and fungal communities were observed when Bacillus 
strains were inoculated into autoclaved soil (Fig. 5A, B). 
The control and UD1022 treatments in natural soil and 
at dilutions of  10–1,  10–3, and  10–6 did not significantly 
change the bacterial or fungal β-diversity (Figures S6 and 
S7).

Role of EPS and TasA in rhizosphere microbiome assembly
Inoculation with the mutant strain  UD1022eps−TasA 
decreased the abundance of the genus Rhizobium in the 
rhizosphere microbiome of natural soil compared with 
that in non-inoculated plants (Additional file  1: Figure 
S8A). Inoculation with the mutant strain resulted in a 
reduced abundance of Abrothallus and Clonostachys in 
the natural soil (Additional file  1: Figure S8B). Several 
bacterial and fungal taxa were detected only when the 
wild-type strain UD1022 was inoculated (Additional 
file  1: Figure S9), including Pedobacter spp. ASV-0024 
and ASV-0126, Gemmatimonas spp. ASV-0066, Plano-
coccaceae spp. ASV-0078, Flavisolibacter spp. ASV-0089, 
Curtobacterium spp. ASV-0097, Mesorhizobium spp. 
ASV-0110, Nocardioides spp. ASV-0181, and Methyloro-
sula spp. ASV-0216. However, some microbial taxa were 
exclusively detected when the mutant strain  UD1022eps−
TasA− was inoculated, including Streptomyces spp. ASV-
0076, Chthoniobacter spp. ASV-0079, Frankia spp. 
ASV-0083, Bryobacter spp. ASV-0100, Adhanibacter spp. 
ASV-0129, Parasegetibacter spp. ASV-0142, Methyloro-
sula spp. ASV-0196, Flavisolibacter spp. ASV-0222, and 
Micropepsaceae ASV-0091 (Additional file 1: Figure S9).

Analysis of bacterial β-diversity revealed significant 
differences in the structures of bacterial and fungal com-
munities due to Bacillus inoculation. These differences 
in β-diversity were observed not only in the compari-
son between non-inoculated and inoculated plants but 
also between plants inoculated with the wild-type strain 
UD1022 or the mutant  UD1022eps−TasA− (Fig. 5 and Fig-
ures  S10-S13). These differences were more remarkable 
in soils with lower microbial diversity (i.e., autoclaved 
soil) (Fig. 5).

Differential abundance analysis using ALDEx2 was 
employed to identify microbial taxa that were differen-
tially enriched in plants inoculated with the wild-type 
strain or the defective mutant lacking EPS and TasA. 
Compared with those of the mutants, the abundances 
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of the phyla Verrucomicrobiota (P < 0.01), Patesci-
bacteria (P < 0.05), Nitrospirota (P < 0.02), Bdellovi-
brinota (P < 0.01), Armatimonadota (P < 0.01), and 
Actinomycetota (P < 0.01) in the wild-type B. subtilis 
strains were greater than those in the wild-type strain 
UD1022 (Fig.  6A). Compared with inoculation with 
the mutant strain, inoculation with the wild-type strain 
also increased the abundances of specific members of 
the fungal community, including Tomentella (P < 0.05), 

Pseudogymnoascus (P < 0.02), Preussia (P < 0.03), Motire-
lla (P < 0.01), Lectera (P < 0.02), Humicola (P < 0.01), 
Fusarium (P < 0.01), Exophiala (P < 0.01), and Cystoba-
sidium (P < 0.05) (Fig. 6B).

Co‑occurrence network analysis of the rhizosphere 
microbiome
The construction of the bacterial networks revealed that 
inoculation with Bacillus strains affected the complexity 

Fig. 5 PCoA analysis of the rhizosphere microbiome of tomato plants cultivated in autoclaved soil. Statistical pairwise comparisons were 
performed using the Adonis method (P < 0.05, permutation = 999). A Comparison of bacterial communities between the control group 
and the UD1022 treatment group (P = 0.008). B Comparison of fungal communities in the control group versus the UD1022 treatment group 
(P = 0.025). C Comparison of the bacterial communities of the control group and the  UD1022eps−TasA− treatment group (P = 0.011). D Comparison 
of fungal communities in the control group versus the  UD1022eps−TasA− treatment group (P = 0.012). E Comparison of the bacterial communities 
of the  UD1022eps−TasA− and UD1022-treated groups (P = 0.009). F Comparison of fungal communities in the  UD1022eps−TasA− versus UD1022 
treatment groups (P = 0.011). Control = non-inoculated plants; UD1022 = plants inoculated with the wild-type strain of B. subtilis; and  UD1022eps−

TasA− = plants inoculated with the mutant strain of B. subtilis 
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of the network (Fig.  7 and Additional file  1: Table  S1). 
The number of edges in the network of plants inocu-
lated with the wild-type strain UD1022 and the mutant 
 UD1022eps−TasA− was reduced compared with that in 
the network of non-inoculated plants. A decrease in the 
number of nodes was also observed in inoculated plants, 
especially when the mutant  UD1022eps−TasA− was inocu-
lated (Fig.  7A). Moreover, a greater number of nodes, 
modularity, and number of communities were observed 
when UD1022 was inoculated than when  UD1022eps−TasA 
was inoculated (Fig. 7 and Additional file 1: Table S1). In 
contrast, compared with wild-type inoculation, mutant 
inoculation resulted in a greater total number of edges, 
including negative and positive edges (Additional file  1: 
Table S1). Thus, compared with the control,  UD1022eps−

TasA inoculation led to a decrease in the number of 
positive connections and an increase in the number of 
negative edges, whereas wild-type UD1022 inoculation 
resulted in a decrease in the number of positive and neg-
ative edges (Fig. 7 and Additional file 1: Table S1).

In terms of the fungal community, plants in the control 
treatment exhibited greater modularity than did those in 
the rhizosphere of plants inoculated with the wild-type 
strain UD1022 or the mutant strain  UD1022eps−TasA− 
(Additional file  1: Table  S1). Notably, in contrast to the 
bacterial networks, inoculation with the mutant strain 
 UD1022eps−TasA− improved fungal connections (Fig. 7B). 
This was evident by an increase in the number of nodes, 
edges, and average clustering coefficient parameters, sur-
passing those observed in the control and UD1022 treat-
ments (Additional file 1: Table S1). In addition, compared 
with the control treatment,  UD1022eps−TasA inoculation 
increased the number of positive and negative connec-
tions, whereas UD1022 increased the number of positive 
edges and decreased the number of negative edges (Addi-
tional file 1: Table S1).

Discussion
Previous studies have shown that the Bacillus subtilis 
strain UD1022 exerts beneficial effects on plant growth 
and offers protection against plant pathogens [13, 23, 
45, 46, 53]. Most experiments involving plant growth-
promoting rhizobacteria (PGPR) are conducted using 
artificial soil or under controlled laboratory conditions 
[70]. Under such conditions, numerous bacterial isolates 

exhibit promising traits for plant growth promotion, 
including siderophore production, phosphate solubiliza-
tion, and phytohormone synthesis [71]. However, when 
these microorganisms are applied in more complex sys-
tems, such as agricultural soil or under on-farm con-
ditions, many of these traits may be subdued or even 
remain unexpressed owing to factors such as niche com-
petition, nutrient limitation, antagonistic interactions, 
and environmental conditions [1, 72, 73].

Therefore, the inoculation of PGPR can encounter vari-
ous challenges when interacting with the resident soil 
microbiome, primarily because of the diverse microbial 
community and the complexity of the relationships pre-
sent around the roots [73–75]. As plants shape the rhizo-
sphere microbiome according to their needs at each life 
stage [76, 77], soil diversity is considered an important 
microbial reservoir for plant root recruitment through 
exudation [3, 78].

Inoculation with the wild-type strain UD1022 
increased ~ 100 to 200-fold the number of B. subtilis gyrB 
genes detected in the rhizosphere of plants growing in 
soils with diluted microbial diversity compared with that 
in non-inoculated plants or those inoculated with the 
mutant strain  UD1022eps−TasA. This observation suggests 
that root colonization by Bacillus is enhanced in soils 
with lower microbial diversity because less diverse soils 
can generate more open environments and less nutri-
ent and niche competition, favoring the establishment of 
inoculants [79–83]. The inverse relationship between soil 
microbial diversity and the survival of an invading bac-
terial pathogen was previously demonstrated using the 
dilution-to-extinction approach [79].

As expected, in soils with lower microbial diversity, the 
wild-type strain UD1022 was more efficient at colonizing 
the rhizosphere than the mutant strain UD1022 eps−TasA−. 
This observation confirms the importance of the EPS and 
TasA genes in root establishment. Surprisingly, in natural 
soil, a higher number of gyrB genes were detected when 
plants were inoculated with the mutant strain. This differ-
ence may be attributed to the naturally higher abundance 
of Bacillus sp. in natural soil, suggesting that inocula-
tion with mutated B. subtilis  UD1022eps−TasA stimulated 
the enrichment of native Bacillus sp. in the rhizosphere. 
The effects of B. subtilis mutation on biofilm production 
in soil are not well understood. Moreover, Zhu et al. [84] 

(See figure on next page.)
Fig. 6 Heatmaps showing variations in the relative abundances of bacteria (A) and fungi (B) across treatments. ALDEx2 analysis was performed 
using Monte Carlo distances from the Dirichlet distribution with a P cutoff of 0.05. The color spectrum on the heatmap, ranging from dark purple 
to orange, represents statistically significant disparities in relative abundance (p < 0.05 to 0.01). A value of 0.01 indicates a more pronounced 
level of differential enrichment. NS = natural soil, D1 = soil dilution  10–1, D3 = soil dilution  10–3, D6 = soil dilution  10–6, and AS = autoclaved soil. 
Control = non-inoculated plants; UD1022 = plants inoculated with wild-type B. subtilis; and  UD1022eps−TasA− = plants inoculated with mutant B. subtilis 
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Fig. 6 (See legend on previous page.)
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recently demonstrated a growth-survival fitness trade-off 
in B. subtilis mutants lacking the master regulator sporu-
lation gene (Spo0A-) in vitro. Their findings showed that 
Spo0A-null strains exhibited increased growth capacity, 
both in terms of rate and yield, compared with wild-type 
B. subtilis because of resource reallocation [84]. However, 
considering that the primer pair employed to detect B. 
subtilis was not strain specific, we were not able to dis-
criminate between soil-resident B. subtilis and the inocu-
lated strain UD1022.

Inoculation with the mutant strain  UD1022eps−TasA− at 
a soil dilution of  10–3 resulted in plants with reduced root 
dry mass compared with that of plants inoculated with 
the wild-type strain. This result implies that the inability 
of strain  UD1022eps−TasA− to form biofilms prevents effec-
tive colonization of the plant rhizosphere, resulting in 
less effective plant growth promotion compared with that 

of the UD1022 wild-type. The genetic traits of the inocu-
lant, such as the presence of chemoreceptors and mobil-
ity in soil, are crucial for establishing the inoculant in the 
plant rhizosphere [13, 85, 86]. However, in this study, the 
resident microbial diversity found in natural soil may 
have played an important role in promoting plant growth 
[85].

In this context, the dilution-to-extinction method has 
been applied to better understand the impacts of micro-
bial invasion on the rhizosphere microbiome [49–52, 
87]. Such research has shed light on changes in soil 
microbial communities under biotic disturbances [87]. 
For example, Ferrarezi et  al. [88] demonstrated that the 
PGPR Azospirillum brasilense had a more pronounced 
beneficial impact on plants growing in soils with lower 
microbial diversity, as determined by applying the dilu-
tion-to-extinction method. It is important to emphasize 

Fig. 7 Co-occurrence network of ASVs according to the Fruchterman Reingold distribution. ASVs were filtered considering occurrence > 20 
times and > 30% abundance. A Bacterial community networks. B Fungal community networks. Non-inoculated plant = Control; plant inoculated 
with wild-type B. subtilis = UD1022; and plant inoculated with mutant B. subtilis =  UD1022eps−TasA−
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that the autoclaved soil did not receive any microbial 
inoculum, and the microbial communities found in this 
treatment originated naturally from the soil. After auto-
claving, the soil was pre-incubated to reach a microbial 
biomass similar to that of the other treatments but with 
reduced species richness [52]. Natural ecosystems show 
variable resistance to invasion by alien species, and this 
resistance can be related to species diversity in the sys-
tem [78]. Mawarda et al. [89] reported that the response 
of the soil microbial community to an introduced organ-
ism is also contingent on the nature and extent of the 
invasion disturbance. This is closely linked to the ecologi-
cal strategies and functional traits of each invader.

Concurrently, beneficial bacteria and fungi were also 
enriched when the wild-type strain UD1022 was inocu-
lated. For example, the bacterial genera Chthoniobacter 
and Pseudarthrobacter are known to contain endophytic/
PGPR strains and species that play a role in the trans-
formation of organic carbon compounds in soil [90–93]. 
In general, Pseudogymnoascus, Preussia, Humicola, 
Fusarium, Exophiala, and Cystobasidium were the most 
enriched fungal genera when UD1022 was inoculated. 
Interestingly, some of these groups, including Preussia 
[94, 95], Humicola [96, 97], and Exophiala [98, 99], are 
known growth promoters in rice. On the other hand, the 
relative abundance of Actinomycetota, which is a phy-
lum harboring well-known beneficial bacteria [99–102], 
decreased in plants inoculated with  UD1022eps−TasA− 
compared to that in plants inoculated with UD1022 
(Additional file 1: Figure S4). This observation may imply 
the importance of the EPS and TasA genes in synergis-
tic interactions among soil resident microbiome com-
munities. Sun and collaborators [103] demonstrated the 
importance of Bacillus biofilm formation in syntrophic 
cooperation in soil. Inoculation with the wild-type B. 
velezensis strain SQR9 positively induced plant-beneficial 
indigenous Pseudomonas stutzeri in the cucumber rhizo-
sphere by branched-chain amino acid (BCAA) produc-
tion compared with a mutant defective in EPS and TasA 
[103]. In the present study, the same pattern was observed 
in soil dilutions  10–3 and  10–6, where Pseudomonadota, 
a phylum of the Pseudomonas genus, was significantly 
enriched when the UD1022 strain was inoculated com-
pared with the  UD1022eps−TasA− strain. The impact of 
UD1022 inoculation on the bacterial community exhib-
ited a stronger effect on the β-diversity of autoclaved soil 
than on that of natural soil. This observation suggested 
that the absence of competition and reduced niche occu-
pancy in autoclaved soil may have allowed the inoculant 
to significantly alter the composition of the bacterial 
communities [104]. Mallon et  al. [81] demonstrated a 
similar pattern for foreign microbial invaders when the 
soil microbial composition was compromised, fitting the 

paradigm of diversity-invasion effects [80–82, 105, 106], 
where less diverse communities have limited abilities to 
use available resources, and consequently, their ability to 
mitigate external microbial invasion decreases.

Previous studies have highlighted the important effect 
of the B. subtilis EPS and TasA genes on social interac-
tions in rhizosphere soil using double-mutated bacteria 
and soil resident communities [34, 45, 107]. These studies 
emphasized the effect of the extracellular matrix on the 
bacterial consortium between two bacterial species and 
its importance in salt stress tolerance. This study extends 
this understanding by showing how EPS and TasA gene 
knockout in B. subtilis affects rhizosphere microbiome 
assembly.

Biofilm formation is essential for successful rhizos-
phere colonization, with the TasA gene playing a crucial 
role in stabilizing biofilm membrane dynamics and ena-
bling cellular adaptation, mainly in plant interactions 
[34, 107, 108]. In this context, compared with UD1022 
inoculation, co-occurrence network analysis revealed 
that inoculation with the mutant strain  UD1022eps−TasA− 
decreased the number of nodes and increased the num-
ber of negative interactions in the bacterial network. On 
the other hand, plants inoculated with UD1022 exhibited 
denser connections within subcommunities than within 
the entire network, which could be one of the stages of 
biofilm production, which includes microcolony for-
mation [108]. The fungal community network was also 
altered by inoculation with the mutant strain  UD1022eps−

TasA−. While the bacterial network decreased the number 
of nodes in the presence of the mutant strain, the fungal 
network showed more nodes than did the network in the 
presence of the wild-type strain UD1022. Therefore, as 
bacteria engage with eukaryotes, highlighting the signif-
icance of social interactions in the coevolution of fungi 
and bacteria, this dynamic process fosters specific inter-
actions and the potential generation of metabolites that 
influence network outcomes [109]. Notably, both the core 
components of the matrix, EPS and TasA, significantly 
contribute to establishing robust interactions with other 
microorganisms [110].

Taken together, the results of this study underscore 
the critical role of the EPS and TasA genes in B. subti-
lis strain UD1022 for effective plant growth promotion 
and modulation of soil microbial communities. The pres-
ence of these genes significantly influenced microbial 
β-diversity, especially in less diverse soils, demonstrating 
their importance in shaping the rhizosphere microbiome. 
The absence of these genes, as observed in plants inoc-
ulated with  UD1022eps−TasA−, altered the bacterial and 
fungal communities, demonstrating their role in social 
interactions and community dynamics. In addition, co-
occurrence network analysis revealed that the absence 
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of the EPS and TasA genes impacted the structure and 
dynamics of the bacterial networks in the rhizosphere. 
This study emphasizes that understanding genetic traits 
such as EPS and TasA is vital for comprehending how 
PGPRs interact with the rhizosphere microbiome and, 
consequently, influence plant health and growth. Fur-
ther research on specific microbiome genetic traits and 
their implications for rhizosphere colonization will sig-
nificantly contribute to the optimization of PGPR-based 
approaches in agriculture.
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