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Abstract

Pseudoalteromonas phage vB_PspS-H40/1 is a lytic phage that infects Pseudoalteromonas sp. strain H40. Both, the
phage and its host were isolated in the 1970s from seawater samples collected from the North Sea near the island

of Helgoland, Germany. The phage particle has an icosahedral capsid with a diameter of ~43 to 45 nm and a long
non-contractile tail of ~68 nm in length, a typical morphology for members of the Siphoviridae family. The linear
dsDNA genome of Pseudoalteromonas phage vB_PspS-H40/1 has a sequence length of 45,306 bp and a GC content of
40.6%. The genome has a modular structure and contains a high proportion of sequence information for hypothetical
proteins, typically seen in phage genome sequences. This is the first report of the complete genome sequence of this
lytic phage, which has been frequently used since the 1990s as biological tracer in hydrogeological transport studies.
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Introduction

Pseudoalteromonas, affiliated with the order Alteromona-
dales [1, 2] of the Gammaproteobacteria (2, 3], is a genus
of heterotrophic, Gram-negative marine bacteria [4].
Members of this genus are widely distributed in marine
ecosystems and have attracted interest due to their frequent
association with eukaryotic hosts and their production of
biologically active compounds [5-7]. Both inhibitory as well
as synergistic chemical interactions between strains of
Pseudoalteromonas and various marine eukaryotes have
been described [8], indicating that members of this genus
are potentially involved in complex ecological networks
across trophic levels. Viruses, as the most abundant

* Correspondence: rene.kallies@ufz.de

'Department of Environmental Microbiology, Helmholtz Centre for
Environmental Research - UFZ, 04318 Leipzig, Germany

Full list of author information is available at the end of the article

( BioMVed Central

biological entity in the oceans, are a major cause of host
mortality and thus key players within these ecological
networks; they influence host community structures and
thereby also influence global biogeochemical cycles and
genetic landscapes [9].

As of April 2016, 14 complete Pseudoalteromonas phage
genomes have been deposited at GenBank (10 of them un-
published). Ten representatives belong to the Caudovirales
order (three siphoviruses, four podoviruses, two myoviruses
and one unclassified caudovirus), one is a corticovirus and
three are unclassified viruses. Pseudoalteromonas phages
have been shown to represent a significant group of phages
in the ocean [10, 11], making it likely that the number of yet
unknown phage genomes is much higher. Characterization
of additional Pseudoalteromonas phage genomes is a further
step towards a better understanding of the diversity, the
biology and the ecological impact of this group of phages
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and contributes to an improved interpretation of viral
metagenome data and dynamics of viral populations in the
environment [12-14]. Moreover, comparison of potentially
closely related viral genomes is a prerequisite to understand
virus evolution and intraspecies genomic variation [15, 16].

In this report we describe the genome of the Pseudoaltero-
monas phage vB_PspS-H40/1, isolated in 1978 from the
North Sea near the island of Helgoland (Germany) [17].
Notably, this phage has been used as a non-reactive biological
agent to trace the flow of water in surface and subsurface
environments and promises utility in (geo-)hydrological
transport studies [18-21]. According to the scheme for the
nomenclature of viruses the phage was re-named from
H40/1 to vB_PspS-H40/1 [22].

Organism Information

Classification and features

The bacterial host H40 was isolated from seawater
samples collected between 1969 and 1978 near the island
of Helgoland in the North Sea [17]. Sequence analysis
of the 16S-rRNA gene revealed H40 as a member of
the Pseudoalteromonas genus. The partial 16S-rRNA se-
quence was deposited at GenBank (acc. no. KX236488).
Strain H40 was used as the bacterial host for screening of
lytic marine bacteriophages from the same sampling site
resulting in the isolation of phage vB_PspS-H40/1 [17].
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Pseudoalteromonas phage vB_PspS-H40/1 is a lytic
phage forming clear, well-contrasted plaques of four to
five mm in diameter. Transmission electron microscopy
showed that vB_PspS-H40/1 is a B1 morphotype with an
icosahedral capsid of 42.7 nm in length (+1.7 nm) and
44.5 nm in width (+ 2 nm). The long, non-contractile
tail had a length of 67.5 nm (+ 3.9 nm) and a diameter
of 6.7 nm (+ 0.6 nm) (Fig. 1). These morphological
characteristics are typical for members belonging to the
Siphoviridae family of the order Caudovirales [23].

The phage surface is moderately charged (zeta potential
of -11 + 3 mV (100 mM K,HPO,/KH,POy, pH = 7)) and of
moderate hydrophobicity (water contact angle =53 + 3°) as
determined by standard physico-chemical characterization
methods of bacterial surfaces (e.g. [24]).

Pseudoalteromonas phage vB_PspS-H40/1 has a linear
dsDNA genome comprising 45,306 bp with a GC content
of 40.6%. It showed the highest similarity (55.3% identity)
over the whole genome to Pseudoalteromonas phage
H103 (GenBank acc. no. KP994596), an unclassified repre-
sentative of the Caudovirales order infecting the marine
host Pseudoalteromonas marina [25] (Fig. 2). Phylogenetic
analysis of the terminase large subunit (TerL) amino acid
sequence grouped phage vB_PspS-H40/1 together with
phage H103 in one clade (Fig. 3). Both phages shared a
most recent common ancestor with TerL sequences found

Fig. 1 Transmission electron micrograph of Pseudoalteromonas phage vB_PspS-H40/1 infecting Pseudoalteromonas sp. strain H40. Virus particles were
stained with 2% tungstophosphoric acid and visualized using an electron microscope Libra 120 (Zeiss, Oberkochen, Germany). Size bar: 40 nm
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Fig. 2 Genome maps of Pseudoalteromonas phages vB_PspS-H40/1 and H103. Protein coding sequences are presented by arrows and their functions are
indicated by colours: red, DNA packaging; green, structural genes, blue, DNA replication and metabolism; grey, hypothetical proteins. Similarities between both
genomes were calculated using tblastx [36]. Similarities are shown in blue according to the scale on the left side. The figure was drawn using Easyfig [44]

in unclassified members of the Caudovirales order and
(probably) prophage sequences from members of the
bacterial family Enterobacteriaceae [26, 27]. These unclas-
sified phages belong to all three families of the Caudovir-
ales order, i.e. Siphoviridae, Podoviridae and Myoviridae.
Taken together, TerL-based phylogenetic analysis indicates
phage vB_PspS-H40/1 occupies (perhaps together with
phage H103) a phylogenetic position distinct from estab-
lished genera of the Siphoviridae family.

Phylogenetic classification and general features of
Pseudoalteromonas phage vB_PspS-H40/1 are summa-
rized in Table 1.

Genome sequencing information

Genome project history

Pseudoalteromonas phage vB_PspS-H40/1 is one of the
few known marine siphovirus isolates [28] and belongs to a
group of important phages found in the ocean [10, 11].
Genome sequencing of this phage will increase available
information and facilitate future studies on diversity, evolu-
tion and ecological impact of marine viruses. A second
reason to select this phage for sequencing is its frequent
application in biological tracing experiments [18—21]. Phage
vB_PspS-H40/1 is one of the marine phages that are
currently used in the frame of the Collaborative Research
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Table 1 Classification and general features of Pseudoalteromonas
phage VB_PspS-H40/1 infecting Pseudoalteromonas sp. strain H40

MIGS ID  Property

Evidence
code®

Term

Classification Domain: N/A

Genome group: dsDNA viruses, IDA
no RNA stage

Phylum: unassigned

Class: unassigned

Order: Caudovirales TAS [23]
Family: Siphoviridae TAS [23]
Genus: unassigned
Species: unassigned
Strain: vB_PspS-H40/1
Particle shape Isometric capsid, IDA
long non-contractile tail
Gram strain N/A
Cell shape N/A
Motility N/A
Sporulation N/A
Temperature N/A
range
Optimum N/A
temperature
pH range; N/A
optimum
Carbon source N/A
MIGS-6  Habitat Marine water column TAS [17]
MIGS-6.3  Salinity N/A
MIGS-22  Oxygen N/A
requirement
MIGS-15  Biotic relationship Intracellular parasite of TAS [17]
Pseudoalteromonas sp.
strain H40
MIGS-14  Pathogenicity Virulent phage of IDA
Pseudoalteromonas sp.
strain H40
MIGS-4  Geographic North Sea, TAS [17]
location Helgoland, Germany
MIGS-5  Sample 1978 TAS [17]
collection
MIGS-4.1  Latitude 54°10'N IDA
MIGS-4.2  Longitude 7°52'E IDA
MIGS-44  Altitude N/A

®Evidence codes - IDA inferred from direct assay, TAS traceable author
statement, N/A not applicable. These evidence codes are from the Gene
Ontology project [46]

Centre AquaDiva to trace the hydrological flow and reactive
transport of colloidal particles from the surface into the
Earth’s subsurface [29]. Environmental influences might in-
activate a still to define percentage of transported phages.
Knowledge of a phage genome will facilitate the detection of
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this phage using PCR and thus allow to (quantitatively) dis-
tinguish between biologically active (e.g. detected by plaque
assay) from inactive phages and might hence help in the in-
terpretation of findings from these transport experiments.

The dsDNA genome of phage vB_PspS-H40/1 was se-
quenced using the Illumina MiSeq system. Experiments,
genome assembly, annotation and submission to GenBank
were performed at the Department of Environmental
Microbiology at the Helmholtz Centre for Environmental
Research - UFZ, Leipzig, Germany. The sequencing project
was started in December 2015 and finished in February
2016 and its outcome is available in the Genome Online
Database under project number Gp0133998. The complete
annotated genome sequence was submitted to Genbank
(GenBank acc. no. KU747973). Information on the project
is summarized in Table 2.

Growth conditions and genomic DNA preparation

The bacterial host Pseudoalteromonas sp., strain H40 was
grown and maintained in 2216E medium [30] (containing
nutrients at 50% of the original concentration) at 20 °C.
The phage was propagated on its host in petri dishes with
2216E agar (with nutrients as above) using the double agar-
layer technique. Five ml of SM buffer (100 mM NaCl,
8 mM MgSO, x 7H,0, 50 mM Tris—HCI, pH 7.5) and a
few drops of chloroform were added to the plates after con-
fluent lysis of bacterial host cells. Plates were gently shaken
for 2 h at room temperature, supernatant was collected and
cell debris was removed by centrifugation at 10,000 x g for
15 min. One volume of chloroform was then added to the
supernatant, gently mixed and centrifuged at 5,000 x g for
5 min. The phage particle-containing upper phase was

Table 2 Project information

MIGS ID  Property Term
MIGS 31 Finishing quality Finished
MIGS-28  Libraries used One paired-end
lllumina library
MIGS 29 Sequencing platforms lllumina MiSeq
MIGS 312 Fold coverage ~1200x
MIGS 30 Assemblers Geneious Assembler
version R6
MIGS 32 Gene calling method RAST, GLIMMER,
GeneMarkhmm
Locus Tag NA?
Genbank ID KU747973
GenBank Date of Release Jun 07, 2016
GOLD ID Gp0133998
BIOPROJECT NA?
MIGS 13 Source Material Identifier NA?

Project relevance Diversity of marine bacteriophage,

Hydrological transport studies

°NA not available
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passed through a 0.22 pm polyvinylidene fluoride CHRO-
MAFIL® membrane filter to remove unlysed host cells and
debris. The resulting phage suspension was stored at 4 °C.
DNA from phage particles was extracted following the
protocol of Thurber et al. [31].

Genome sequencing and assembly

The extracted phage DNA was sheared into ~300 to 500 bp
fragments using the Covaris M220 Focused-ultrasonicator™
instrument and one paired-end library was prepared with the
NEBNext® Ultra® DNA Library Prep Kit for Illumina®.
Sequencing was performed at the Helmholtz Centre for
Environmental Research - UFZ on an Illumina MiSeq system
(2 x 150 bp). In total, 418,468 paired-reads were obtained for
Pseudoalteromonas phage vB_PspS-H40/1. Raw reads were
split into 10 subsets (approximately 42,000 reads for each
subset) to facilitate improved assembly [32]. Independent
assemblies were performed for each subset by Geneious
Assembler (version R6) resulting in nearly the same single
contig for each of the subsets but with different starting
points indicating a circularly permuted genome of phage
vB_PspS-H40/1. For confirmation, PCR primers were de-
signed matching the ends of the contigs with an outward
orientation and used in PCR. The resulting amplicon
was Sanger sequenced and used to close the contigs for
Pseudoalteromonas phage vB_PspS-H40/1. The coverage
was estimated by reference mapping of the raw reads to
the contig resulting in an approximate 1200-fold coverage
(~ 92% of all reads) of the 45,306 bp genome.

Genome annotation

Genes and ORFs in the phage genome were predicted
using a combination of three gene calling methods: the
RAST annotation server [33], GLIMMER3 [34] and
GeneMark.hmm [35]. Only ORFs that were predicted by
two of the three gene calling methods were included in
the annotation. Functional annotation of translated ORFs
was improved by BLASTp alignments against the NCBI
non-redundant database [36]. In addition, RPS-BLAST
searches against the Conserved Domain Database [37]
and HMMER search [38] against the UniProtKB database
were performed. Protein domains were predicted using
the COG [39], Pfam [40], TIGRFAMs [41] and KEGG
[42] databases. Phoebius [43] was used to predict signal
peptides and transmembrane helices.

Genome properties

The complete genome of Pseudoalteromonas phage
vB_PspS-H40/1 was assembled into one linear contig of
45,306 bp with a GC content of 40.6%. In total, 73 puta-
tive coding sequences were predicted in the phage gen-
ome (Fig. 2, Additional file 1: Table S1). Seventeen of
these 73 protein coding genes were assigned to putative
protein functions. The functions of the remaining 56
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putative protein coding genes remained unknown and
they were annotated as hypothetical proteins. One gene
with a signal peptide was identified together with eight
proteins containing transmembrane helices. Pseudoaltero-
monas phage vB_PspS-H40/1 genome properties are sum-
marized in Table 3 and genes assigned to COG functional
categories are listed in Table 4.

Insights from the genome sequence
When all 73 predicted CDSs were subjected to func-
tional annotation only 17 CDSs could be assigned to a
specific function. These functions were related to DNA
packaging, head and tail assembly, DNA replication and
metabolism (Fig. 2 and Additional file 1: Table S1).
Twenty-nine of the predicted CDSs, including mainly
hypothetical proteins but also TerL and structural pro-
teins, showed highest similarity to the unclassified Cau-
dovirales member Pseudoalteromonas phage H103 after
blastp analysis (Fig. 2). Highest similarity of other CDSs
was found to marine Pseudoalteromonas phages belong-
ing to the Siphoviridae family, i.e. Pseudoalteromonas
phage TW1 (GenBank acc. no. KC542353), Pseudoalter-
omonas phage Pq0 (GenBank acc. no. NC_029100) and
Pseudoalteromonas phage H105/1 (GenBank acc. no.
NC_015293). However, proteins involved in DNA repli-
cation (helicase, RecA-NTPase and methylase) were
related to those found in Vibrio phage H188 (GenBank
acc.no. KT160311) and Escherichia phage vB_EcoM-ep3
(GenBank acc. no. NC_025430), two members of the
Myoviridae family, suggesting mosaicism of the genome.
Phylogenetic inferences deduced from the TerL amino
acid sequence showed no close phylogenetic relationship
to any of the established Siphoviridae genera (Fig. 3).

Table 3 Genome statistics

Attribute Value 9% of Total
Genome size (bp) 45,306 100.00
DNA coding (bp) 42,786 9444
DNA G+ C (bp) 17376 40.60
DNA scaffolds 1 100.00
Total genes 73 100.00
Protein coding genes 73 100.00
RNA genes 0 0.00
Pseudo genes 0 0.00
Genes in internal clusters 0 0.00
Genes with function prediction 17 2329
Genes assigned to COGs 6 8.22
Genes with Pfam domains 18 24.66
Genes with signal peptides 1 134
Genes with transmembrane helices 8 10.96
CRISPR repeats 0 0.00
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Table 4 Number of genes associated with general COG
functional categories

Code Value %age Description
J 0 0.00 Translation, ribosomal structure
and biogenesis
A 0 0.00 RNA processing and modification
K 1 1.34 Transcription
L 3 41 Replication, recombination and repair
B 0 0.00 Chromatin structure and dynamics
D 0 0.00 Cell cycle control, Cell division,
chromosome partitioning
\ 0 0.00 Defense mechanisms
T 0 0.00 Signal transduction mechanisms
M 1 134 Cell wall/membrane biogenesis
N 0 0.00 Cell motility
U 0 0.00 Intracellular trafficking and secretion
@) 0 0.00 Posttranslational modification,
protein turnover, chaperones
C 0 0.00 Energy production and conversion
G 0 0.00 Carbohydrate transport and metabolism
E 0 0.00 Amino acid transport and metabolism
F 0 0.00 Nucleotide transport and metabolism
H 0 0.00 Coenzyme transport and metabolism
I 0 0.00 Lipid transport and metabolism
P 0 0.00 Inorganic ion transport and metabolism
Q 0 0.00 Secondary metabolites biosynthesis,
transport and catabolism
R 1 134 General function prediction only
S 1 134 Function unknown
- 66 9041 Not in COGs

The total is based on the total number of protein coding genes in the genome

Conclusions

The characterized complete genome of lytic Pseudoalter-
omonas phage vB_PspS-H40/1 that was isolated from
seawater in the North Sea improves our knowledge of
this significant group of phages. The linear dsSDNA gen-
ome has a size of 45,306 bp and a GC content of 40.6%.
The obtained sequencing data indicate phage vB_PspS-
H40/1 uses headful packaging strategy and that the
genome is circularly permuted. Among the 73 protein
coding sequences only 17 were functionally annotated.
Transmission electron microscopy and phylogenetic
analysis of TerL sequences suggest this phage might be-
long to a genus of a yet unclassified group of Siphoviri-
dae. Next to studies on specific phage-host interactions
in marine systems, phage vB_PspS-H40/1 will be used in
surface and groundwater tracer experiments and its
genome sequence and morphological description will help
interpreting results from these studies.
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Additional file

Additional file 1: Table S1. Putative functions of orfs found in
Pseudoalteromonas phage vB_PS-H40/1 genome. Also shown are most
significant blastp hits for each orf. (DOCX 19 kb)
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