
SHORT GENOME REPORT Open Access

Draft genome of Prochlorothrix hollandica
CCAP 1490/1T (CALU1027), the chlorophyll
a/b-containing filamentous cyanobacterium
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Abstract

Prochlorothrix hollandica is filamentous non-heterocystous cyanobacterium which possesses the chlorophyll a/b
light-harvesting complexes. Despite the growing interest in unusual green-pigmented cyanobacteria
(prochlorophytes) to date only a few sequenced genome from prochlorophytes genera have been reported. This
study sequenced the genome of Prochlorothrix hollandica CCAP 1490/1T (CALU1027). The produced draft genome
assembly (5.5 Mb) contains 3737 protein-coding genes and 114 RNA genes.
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Introduction
The majority of cyanobacteria use chl a as a sole magne-
sium tetrapyrrole and common phycobilisome function-
ing as the bulk LHC. The prochlorophytes are a unique
pigment subgroup of phylum Cyanobacteria – besides
chl a, they contain other chls (b; 2,4-divinyl a; 2,4-divi-
nyl b; f; g) as antennal pigments and simultaneously do
not depend on the PBP-containing photoreceptors [1].
Prochlorophytes demonstrating these outgroup features
are few and encompass three marine unicellular genera
(Prochloron, Prochlorococcus, Acaryochloris) and one
freshwater filamentous (Prochlorothrix). Unicellular
Prochlorococcus spp. dominate in phytoplankton of
oligotrophic regions of the world’s ocean and they are
of exceptional importance from the viewpoint of global
primary productivity [2]. Prochloron sp. and Acaryo-
chloris sp. were isolated in symbiotic association with
colonial ascidians [3, 4]. In contrast to other prochloro-
phytes distribution, P. hollandica is characterized by
low abundance and patchy distribution [5]; more
detailed genome analysis would explain the ecophysio-
logical background of this microorganism.

The genus Prochlorothrix is represented by two cul-
tivable free-living species: Prochlorothrix hollandica
and Prochlorothrix scandica, as well as a number of
unculturable strains, originating from environmental
16S rRNA sequences [6]. The distinction between P.
hollandica and P. scandica is predominantly based on
the molecular-genetic characters: DNA reassociation
less than 30 % and DNA GC mol% content difference
more than 5 % [5].
P. hollandica was isolated from the water bloom of

Loosdrecht lake (near Amsterdam, Nertherlands) and
validly published under the rules of Bacteriological
Code as the type strain CCAP 1490/1T [7, 8]. The
strain CCAP 1490/1 was generously supplied in 1994
by Dr. Hans C.P. Matthijs (Amsterdam University)
and since then stored as CALU1027 at the Collection
of Cultures of Algae and Microorganisms of St.
Petersburg State University, CALU [9]. Prochlorothrix
hollandica is also maintained as different strains
under collection indexes CCMP34, CCMP682, NIVA-
5/89, SAG10.89, and the strain PCC9006 was reported
as well [10]. Another filamentous strain Prochlorothrix
scandica was isolated from the phytoplankton of Lake
Mälaren (Sweden), and is maintained as NIVA-8/90
and CALU1205 [11].
Among prochlorophytes at first were sequenced

small genomes of unicellular Prochlorococcus sp.
strains from LL- and HL-clades [2, 12, 13]. Four
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sequenced genomes of symbiotic Prochloron didemni
P1-P4 are second in number [14]. Acaryochloris mar-
ina genomes were sequenced in the strains CCME5410
and MBIC11017 [15], but only one paper mentioned
about P. hollandica PCC9006 genome sequenced by
Shich et al. in the context of improving of global

cyanobacterial phylogeny [16]. Here we report that
genomic DNA of P. hollandica CCAP 1490/1T

(CALU1027) was sequenced and obtained draft gen-
ome was annotated in order to conduct investigations
in the field of comparative genomics of cyanobacteria
and prochlorophytes.

Fig. 1 Phylogenetic position of P. hollandica CALU1027 within cyanobacteria. GenBank accession numbers are indicated in parentheses. The
numbers above branches indicate bootstrap support from 1000 replicates

Fig. 2 Light micrograph of P. hollandica CALU1027. Scale bar 10 μm
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Organism information
Classification and features
A representative genomic 16S rDNA sequence of strain
P. hollandica CCAP 1490/1T (CALU1027) was com-
pared with another prochlorophytes and also with
cyanobacterial type strains sequences obtained from
GenBank. The tree was reconstructed using neighbor-
joining with the Kimura-2 parameter substitution model
in MEGA 6.0 [17, 18]. The phylogenetic position of P.
hollandica CALU1027 represents in Fig. 1. Representa-
tives of the genus Prochlorothrix are morphologically
similar to other filamentous non-heterocystous cyano-
bacteria (Subsection III, Oscillatoriales) [19]. In particu-
lar, P. hollandica CALU1027 produces long (>300 μm)

straight, unbranched, non-motile trichomes (Fig. 2).
Individual cells are 1.6 ± 0.1 μm wide and 11.8 ± 0.9 μm
long that matches with the data reported [2, 4]. The
opaque polar aggregates of gas vesicles resemble of those
presented in Pseudanabaena type, but P. hollandica
trichomes possess more slight intercellular constrictions
(1/5 − 1/8 cell diameter). Trichomes multiply by means
of occasional breakage without the resulting formation
of hormogonia. Light- or electron microscopic-visible
sheath and mucilaginous capsule were never observed;
cell envelope demonstrates a typical Gram-negative
triple-layer contour [5]. A brief survey of P. hollandica
CALU1027 properties according to MIGS recommenda-
tions [20] is given in Table 1.

Table 1 Classification and general features of P. hollandica CALU1027

MIGS ID Property Term Evidence codea

Current classification Domain Bacteria TAS [33]

Phylum BX Cyanobacteria TAS [19]

Class Photobacteria TAS [34]

Order Prochlorales TAS [34]

Family Prochlorothrichaceae TAS [8]

Genus Prochlorothrix TAS [8]

Species Prochlorothrix hollandica TAS [8]

Type strain CCAP 1490/1T TAS [8]

Gram stain Not reported

Cell shape Elongated rods TAS [5, 8]

Motility Nonmotile TAS [8]

Sporulation Not reported

Temperature range 15 °C − 30 °C TAS [8]

Optimum temperature 20 °C TAS [5, 8]

pH range, Optimum 8.4 TAS [8]

Carbon source Autotroph TAS [8]

Energy source Phototroph TAS [8]

MIGS-6 Habitat Freshwater TAS [8]

MIGS-6.3 Salinity Less than 25 mM TAS [5, 8]

MIGS-22 Oxygen requirement Aerobic TAS [8]

MIGS-6.4 Chlorophyll type Chlorophylls a and b TAS [8]

MIGS-15 Biotic relationships Free-living TAS [8]

MIGS-14 Pathogenicity Not reported

MIGS-4 Geographic location Loosdrecht lake, The Netherlands TAS [8]

MIGS-5 Sample collection time 9 July, 1984 TAS [8]

MIGS-4.1 Latitude 52.20 N TAS [8]

MIGS-4.2 Longitude 5.5 E TAS [8]

MIGS-4.3 Depth 0.2 m TAS [8]

MIGS-4.4 Altitude 2 m NAS
aEvidence codes - TAS Traceable Author Statement (i.e., a direct report exists in the literature), NAS Non-traceable Author Statement (i.e., not directly observed for
living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence)
These evidence codes are from the Gene Ontology Project [25]
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Genome sequencing information
Genome project history
The WGS project AJTX02 has been deposited at DDBJ/
EMBL/GenBank under accession AJTX00000000 (20.02.
2013) and updated, in this research, as Draft Genome
Project AJTX00000000.2 (29.04.2015). The assembled
contigs have been deposited in NCBI. The project

information and its association with the MIGS are
summarized in Table 2.

Growth conditions and genomic DNA preparation
P. hollandica CALU1027 was grown in the BG-11
medium [2]. The strain is a moderate mesophile, well
growing at 20-22 °C under continuous flux of light. For
DNA isolation cells were harvested by centrifugation and
treated with 2 μg/mL Proteinase K in 0.1 M Tris-HCl
(pH 8.5), 1.5 M NaCl, 20 mM Na2EDTA, and 2 % cetyltri-
methylammonium bromide at 55 °C for 3-4 h. DNA was
purified by standard protocol of organic extraction and
ethanol precipitation.

Genome sequencing and assembly
For genome sequencing, DNA was randomly fragmen-
ted using Q800R sonicator system. After size selection,
500 bp DNA fragments were used for constructing
sequence libraries and thereafter sequenced with a

Table 3 Genome statistics

Attribute Genome (total)

Value % of totala

Genome size (bp) 5,525,469 100.00

DNA coding (bp) 3,931,877 71.16

DNA G + C (bp) 2,999,78 54.56

DNA scaffolds 10 −

Total genes 4,294 100.00

Protein coding genes 3,737 87.00

RNA genes 57 1.32

rRNA genes 12 0.28

tRNA genes 44 1.02

ncRNA genes 1 0.02

Pseudo genes 515 11.99

Genes in internal clusters 235 5.4

Genes with function prediction 2,770 64,5

Genes assigned to COGs 2,855 66.00

Genes with Pfam domains 2,386 55.56

Genes with signal peptides 86 2

Genes with transmembrane helices 869 20.24

CRISPR repeats 9 0.2
a The total is based on either the size of the genome in base pairs or the total
number of protein coding genes in the annotated genome

Table 2 Project information

MIGS ID Property Term

MIGS-31 Finishing quality Draft

MIGS-28 Libraries used Illumina paired-end library

MIGS-29 Sequencing platform Illumina MiSeq

MIGS-31.2 Fold coverage 30×

MIGS-30 Assemblers SPAdes v. 3.5.0

MIGS-32 Gene calling method GeneMarkS+

Locus Tag PROH

GenBank ID GCA_000341585.2

Genbank date of release 20 February, 2013

Gold ID Gp0010359

BioProject PRJNA63021

DDBJ ID AJTX00000000.2

MIGS-13 Source Material Identifier CALU1027

Project relevance comparative genomics

Table 4 Number of genes associated with general COG
functional categories

Code Value % agea Description

J 160 4.28 Translation, ribosomal structure and biogenesis

A 0 0 RNA processing and modification

K 141 3.77 Transcription

L 213 5.69 Replication, recombination and repair

B 3 0.08 Chromatin structure and dynamics

D 39 1.04 Cell cycle control, cell division, chromosome
partitioning

V 64 1.71 Defense mechanisms

T 316 8.46 Signal transduction mechanisms

M 210 5.62 Cell wall/membrane biogenesis

N 56 1.50 Cell motility

U 76 2.03 Intracellular trafficking and secretion

O 144 3.85 Posttranslational modification, protein turnover,
chaperones

C 148 3.96 Energy production and conversion

G 126 3.37 Carbohydrate transport and metabolism

E 201 5.37 Amino acid transport and metabolism

F 67 1.79 Nucleotide transport and metabolism

H 156 4.17 Coenzyme transport and metabolism

I 55 1.47 Lipid transport and metabolism

P 136 3.64 Inorganic ion transport and metabolism

Q 52 1.39 Secondary metabolites biosynthesis, transport
and catabolism

R 407 10.89 General function prediction only

S 409 10.94 Function unknown

− 8 0.21 Not in COGs
aThe total is based on the total number of protein coding genes in
annotated genome
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250 bp paired-end reads method using the Illumina
MiSeq platform according to the manufacturer’s
protocol, resulting in 3,679,738 read pairs. Reads were
processed via the Trimmomatic 0.32 tool [21] and
after filtration there were 3,665,348 read pairs. The

obtained reads were used for further genome assembly
with SPAdes 3.5 [22]. From the resulting assembly, the
P. hollandica CALU1027 contigs was selected and
scaffolded with Contiguator 2.7.4 [23], using assembly
GCF_000332315.1 as a reference. The draft genome of

Table 5 Selected functional capacities

Cell function Metabolic system/element Putative gene/gene product

Light energy metabolism Oxygenic phototrophy; photorespiration psaA-F, psaJ-L, psaX, psbA-D, psbH-P, psbU, psbV, psbW, psbZ,
pcbA-C; ycf39, petA, petB, pet D, petE, hoxH/hoxY, PsbF, cyt f, cyt
b6; PC, CAT, SGAT, Fd-GOGAT, IpdA

Dark energy metabolism Glycolysis and gluconeogenesis;
methylglyoxal metabolism, pentose
phosphate pathway; Entner-Doudoroff
pathway; pyruvate cleavage;
TCA with glyoxylate bypass

GlcK, HxK, PPgK, PfK1, PfK2, PPiFKa, PPiFKb, Fbp_I, B, X; Fba1- 2,
TpI, GADH, G3PNP, PgK, PgM, EnO, PyK, PpS, PpD, Hyp1, GPDH;
MgsA, GloA-B, AldA-B, GRE2; GPDH, PLG, RisA-B, TK, TA, FPK, XPK,
PglD, OpcA; AlaDH, AlaR, AlaGAT, SerD, SerT; glcB-F, HxK, GoxR,
HpyrR, GalDH, AldDH, 2PGP; PyK, PpS, PpD, Pc, PEPC, ME; PDE,
POX, PDC, PFORa-d, PDHA-B, DDH, OPOT, ADHA; GOX, lysR

Lipid/pigments metabolism Chl, iron tetrapyrrols, fatty acids,
isoprenoids, phospholipids

PMgCD, PMgCH, PmgMT, ChlEAe, DVR, ChlB, ChlG, ChlL-M, POR;
GltR, UroM, UroD, HemQ, HemX-Y; FabA-T, HpnE-H; CruA-G, CrtL,
GlyP, GarL

Carbon substrate
intermediary metabolism

Calvin cycle; fructose, galactose,
mannose, sucrose, polyglucoside,
aminosugar, nucleotide sugar,
C1-substrate and glycogen
metabolism

PRK, Rbc, PGK, GAPDH, TPI, FBA1-2, FBP_I-X, TK, RPE; cbbL; cbbS, Ss,
RBCS, RBCI, ClCP, CA; ManA-P, MalE-G, K; MsmK, LamB, MalL-K,
MalA-B; NAGK1-3, NagA-E, CbSA, ChbA-C; mtdA, FTCLI; GAT_C,
GAT_D, GS, GBr, GP, MP, MOTs, aAMP

Nitrogen substrate
intermediary metabolism

Nitrogen and ammonia assimilation;
urea cycle

cynT, cynR, cynS, cynX; nrfB-H, niR1-3, niTa-Tc, narC, narG, narH, narI,
napA-L, napR-T, nrfE-G, nrfX, GsI, GSIII, GlnE, GlnD, GOGDP1,
GOGDP2, GlxC-D, GOGD, GAT, NRI, NRII, PII, PIIK, NtcA; UreD-G

Protein metabolism Amino acids, polyamines and
glutathione biosyntheses; protein
processing, degradation, modification
and folding; selenoproteins

GltB, GlxC-B, GldH, AspA-C, AsnA-B, GltS, GlsA, HisA-I, AstA-E, ArgR,
SpeA-C, ArcA-D, MetN-T, ThrA-C, AspC, CysB-E, Lys1, LLP, CadA-C,
DavA-D, CodA, LeuA-D, TrpA-E, TyrA, PheA, ProA-C, SelD, GlyA-B,
AlaB, AlaR, CsdA, SufS, SerA-C; SelA-B

Mineral substrate metabolism Phosphate, sulfur, iron and potassium
metabolism

pho regulon; high-affinity phosphate transporter genes;
siderophores; bacterioferritins; CysA, CysQ, SAT1-2, APSR,
ASK, SIRFP, FPR_A; FhuB; kdpA-E, KefA-B, KefF

Enzyme cofactor metabolism Coenzyme B12, FAD, FMN, lipoic acid,
Mo-cofactor, NAD, pterines, pyridoxin,
quinone, riboflavin, thiamine
biosynthesis

BioC, BioH, HoxE, HoxF, HoxH, HoxU, HoxY, CobA-C, CbiA-K,
ThiB-G; UbiA-H; menA-D; PyrD, PyrR, PyrP, RSAe, FMNAT, LUMP,
RK, RSA, gapA, pdxA-K, FolA-B; LipA-C, LipL-M, BirA, GlyP, PdhB,
SucB, AceB, BkdB

Secondary metabolism Auxin, flavonoids, terpenes and
derivatives biosynthesis

plant hormones (AUX1, APRT, PRAI, IGS,TSa, TM, IAH, IAD, AAD,
AFTS), toxin-antitoxin replicon stabilization systems (RelB, E, F;
CcdA-B, ParE-D, HigA-B, VapC-B, YoeB, YefM, YafQ, DinJ, YeeU, YkfI,
YafW, YpjF, YgiZ)

Membrane transport ABC transporters (phnC-E, oppA-F, dppA-F), FtsY, TatA-E, MgtA-E,
YcnL-K, CopC-D, CsoR, CopA, ModB; TolA, TonB, NikQ, NikM, CbiQ,
CbiO, CbiM, BioM, BioN, MtsA-C, YkoC-E lipT, Sec-translocase;
secretion protein type E, type IV pilus (pilA, pilT)

Cell division, cytoskeleton ftsZ, ftsW, ftsB, ftsL, ftsA, ZipA, ZapA, MinC-E, ParA-B, Maf, YgiD,
YeaZ(TsaB); MreB-D, RodA, MraZ

Regulation kaiA-C, sasA, CikA, Pex, CPM; nrrA, groEL, grpE, dnaJ, LdpA, PSF,
SigB, RsbR-W, PemK, SigF, SigG, SigFV, sig70, hetR, TyrR, IcsR, YbeD,
cAMPB, FNR, CGA, dnaG, rpoD, exoY, pagA, AtxA, AtxR, hcnA-C, Clp2,
ArsR, HisI, PyrC, FolE, HemB, CynT, CysS, YGR262c; SpoT, RelA, Rex,
Fur_Zur, Fnr, gpp

Stress response Protection from reactive oxygen
species; oxidative and
periplasmic stress

sodA-C, cyt c551 peroxidase, HP1; SoxS-R, OxyR, PerR, NnrS, AhpC, HemO,
gshA-B, GltC, GltT, Rth, SOR, Rdx, ROO, NRO, AHR, grlA, EnvC, HbO, CHb,
FHP, HmpX, Hfq, HflX-C; DegP-S, RseP, RseA-B, SurA, DegQ, HtrA

Phages, integrons and CRISPRs SA bacteriophages 11, TFP1-2, TFAP, TFC, Lys1-8, LysA-B, Hol1-2, TransI,
endolysin; integrons (Int1-2, Int4, InyIPac); CRISPR cmr-cluster (Cmr1-6,
Csx11, NEO113, TM1812, Cas02710); CasReg, Cas1-7, Csh1-2, Csd1-2,
Cse1-4, Csn1-2, Csy1-4, Csa1-5, Csm1-5, Cst1-2
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P. hollandica CALU1027 contained about 5.5 Mbp in
286 contigs organized in 10 scaffolds; the N50 length
of the contigs was 33,173 and N50 length of the
scaffolds - 1,244,169 bp (Table 3).

Genome annotation
Protein-coding genes of draft genome assembly were
predicted using the NCBI Prokaryotic Genome Anno-
tation Pipeline (v.2.10) and an annotation method of
best-placed reference protein set with GeneMarkS+ [24].
The annotated features were genes, CDS, rRNA, tRNA,
ncRNA, and repeat regions. Functional assignments of the
predicted ORFs were based on a BLASTP homology
search against WGS of phylogenetically closest cyanobac-
teria and the NCBI non-redundant database. Functional
assignment was also performed with a BLASTP homology
search against the Clusters of Orthologous Groups (COG)
database [25, 26]. As much as 2855 genes (66 %) were
assigned as a putative function, and the remaining genes
were annotated as either hypothetical proteins or proteins
with unknown function.

Genome properties
The GC content of the P. hollandica CALU1027
genome was 54.56 %. Gene annotation revealed 3737
protein coding genes, 12 rRNA genes, and 44 tRNA
genes. COG annotations of protein coding genes are
presented in Table 4.

Insights from the genome sequence
The assembly and analysis of P. hollandica CALU1027
genome annotation revealed a repertoire of genes neces-
sary for the autonomous energy and substrate metabol-
ism: 743 detected genes with relevance to 129 metabolic
pathways have orthologs in P. hollandica CALU1027
and other cyanobacteria (Table 5). Comparative genomes
analysis of P. hollandica CALU1027 with filamentious het-
erocystous cyanobacteria Anabaena variabilis ATCC29413
and unicellular prochlorophytes Prochlorococcus marinus
CCMP1375 and Acaryochloris marina MBIC11017 re-
vealed that the main differences were in the amino acids
compounds, carbohydrates metabolism, membrane trans-
port and stress response systems (data not shown).
Chl a/b-containing Prochlorothrix and Prochloron were

long considered to have a common ancestry with chloro-
plasts of green algae and higher plants [27, 28]. However,
P. hollandica and another prochlorophytes were shown to
possess unique genes pcbA − pcbC coding chl a/b-LHC
apoproteins and they are dissimilar from CAB apoprotein
superfamily of chloroplast antenna [19–30]. It is notable
that we found some PS II proteins commonly absent in
cyanobacteria but usually belonging to chloroplast in
green algae and higher plants: PsbW (6.1 kDa, nuclear
encoded), PsbT (5 kDa, nuclear encoded), PsbR (10 kDa)

and PsbQ (16 kDa, oxygen evolving complex protein). We
also found that P. hollandica contains an ortholog of hetR
gene (key regulator of heterocyst differentiation) although
all these filamentous non-heterocystous cyanobacteria are
devoid of nitrogenase and other prerequisites for diazotro-
phy [31, 32].

Conclusions
The studying of P. hollandica CCAP1490/1T (CALU1207)
genome is valuable for analyses of photosynthesis genes
evolution and for comparative genomics of cyanobacterial
adaptation.

Abbreviations
chl: Chlorophyll; HL: High light; LHC: Light-harvesting complex; LL: Low light;
PBP: Phycobiliprotein; PS: Photosystem
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