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Abstract

Bacillus subtilis LM 4–2, a Gram-positive bacterium was isolated from a molybdenum mine in Luoyang city. Due to its
strong resistance to molybdate and potential utilization in bioremediation of molybdate-polluted area, we describe the
features of this organism, as well as its complete genome sequence and annotation. The genome was composed of a
circular 4,069,266 bp chromosome with average GC content of 43.83 %, which included 4149 predicted ORFs and 116
RNA genes. Additionally, 687 transporter-coding and 116 redox protein-coding genes were identified in the strain LM
4–2 genome.
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Introduction
Bacillus subtilis LM 4–2 was a molybdenum-resistant
strain isolated from a molybdenum mine. It has been
reported that many microbes can resist the toxicity of
molybdate ion though reduction of molybdate (Mo6+) to
Mo-blue. Molybdenum-reducing microorganisms came
from a variety of genera and included the following spe-
cies, Klebsiella spp. [1, 2], Acidithiobacillus ferrooxidans
[3], Enterobacter cloacae [4], Serratia marcescens [5, 6],
Acinetobacter calcoaceticus [7], Pseudomonas spp. [8], and
Escherichia coli K12 [9]. The capability of molybdate-
reduction presents potential possibility of molybdenum
bioremediationin many polluted areas [10]. Strain LM 4–2
showed stronger resistance to molybdate (up to 850 mM
Na2MoO4) than many other reported molybdenum-
resistant bacteria [11, 12]. However, no information related
to the molecular mechanism of molybdenum-resistance
has been identified, also in genus Bacillus. Thus, strain LM
4–2 might be a perfect subject for us to unveil the
mechanism and evaluate its possibility utilization in
bioremediation. Here we present the complete genome

sequence and detailed genomic features of B. subtilis
LM 4–2.

Organism information
Classification and features
Bacillus subtilis LM 4–2 (CGMCC 1.15213) is a Gram-
positive, spore-forming, rod-shaped Bacillus (0.3-0.5 μm
wide and 3.0–4.0 μm long) with an optimum pH 6.0 and
optimum temperature of 30 °C (Table 1, Fig. 1). Colonies
are milky white and matte with a wrinkled surface when
growth on R2A agar medium. Strictly aerobic and
catalase formed. Carbon substrates utilized for growth
by strain LM 4–2 included D-glucose, maltose, lactose
and sucrose. Strain LM 4–2 is closely related to Bacillus
subtilis species based on the BLAST results of 16S rRNA
gene [27]. The identity of 16S rRNA gene sequence
between strain LM 4–2 and type strain B. subtilis DSM
10T is 100 %. A phylogenetic tree was constructed using
the neighbor-Joining method under the default settings
for complete sequence of 16S rRNA gene derived from
genome of strain LM 4–2, along with the sequences of
representative members of genus Bacillus [28–34]. The
phylogenetic tree was assessed by boot-strapped for
1000 times, which is shown in Fig. 2. Average nucleotide

* Correspondence: zhqjiang@cau.edu.cn
1College of Food and Bioengineering, Henan University of Science and
Technology, Luoyang, P. R. China
3College of Food Science and Nutritional Engineering, China Agricultural
University, Beijing, P. R. China
Full list of author information is available at the end of the article

© 2015 You et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

You et al. Standards in Genomic Sciences  (2015) 10:127 
DOI 10.1186/s40793-015-0118-6

http://crossmark.crossref.org/dialog/?doi=10.1186/s40793-015-0118-6&domain=pdf
http://dx.doi.org/10.1601/nm.10618
http://dx.doi.org/10.1601/nm.3202
http://dx.doi.org/10.1601/nm.2202
http://dx.doi.org/10.1601/nm.3149
http://dx.doi.org/10.1601/nm.11022
http://dx.doi.org/10.1601/nm.2766
http://dx.doi.org/10.1601/nm.2552
http://dx.doi.org/10.1601/nm.3093
http://dx.doi.org/10.1601/nm.4857
http://dx.doi.org/10.1601/nm.10618
http://dx.doi.org/10.1601/nm.10618
http://doi.org/10.1601/strainfinder?urlappend=%3Fid%3DCGMCC+1
http://dx.doi.org/10.1601/nm.4857
http://dx.doi.org/10.1601/nm.10618
http://dx.doi.org/10.1601/nm.10618
http://dx.doi.org/10.1601/nm.10618
http://doi.org/10.1601/strainfinder?urlappend=%3Fid%3DDSM+10T
http://doi.org/10.1601/strainfinder?urlappend=%3Fid%3DDSM+10T
http://dx.doi.org/10.1601/nm.4857
mailto:zhqjiang@cau.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Table 1 Classification and general features of Bacillus subtilis LM 4–2 according to the MIGS recommendations [13]

MIGS ID Property Term Evidence codea

Classification Domain Bacteria TAS [14]

Phylum Firmicutes TAS [15–17]

Class Bacilli TAS [18, 19]

Order Bacillales TAS [20, 21]

Family Bacillaceae TAS [20, 22]

Genus Bacillus TAS [20, 23, 24]

Species Bacillus subtilis TAS [25]

Gram stain Positive IDA

Cell shape Rod-shaped IDA

Motility Motile IDA

Sporulation Spore-forming NAS

Temperature range 4–45 °C IDA

Optimum temperature 30 °C IDA

pH range; Optimum 4–9; 6.0 IDA

Carbon source organic carbon source IDA

MIGS-6 Habitat soil IDA

MIGS-6.3 Salinity salt tolerant NAS

MIGS-22 Oxygen requirement aerobic IDA

MIGS-15 Biotic relationship free-living NAS

MIGS-14 Pathogenicity non-pathogen NAS

MIGS-4 Geographic location Luoyang/Henan/China IDA

MIGS-5 Sample collection 2012 IDA

MIGS-4.1 Latitude 33°55′3.21″N

MIGS-4.2 Longitude 111°31′0.42″E

MIGS-4.4 Altitude 1164.78

Evidence codes - IDA Inferred from Direct Assay, TAS Traceable Author Statement (i.e., a direct report exists in the literature), NAS Non-traceable Author Statement (i.e., not
directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from the
Gene Ontology project [26]

Fig. 1 Transmission electron microscopy of strain LM 4–2. Scale bar corresponds to 1.0 μm
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identity (ANI), average amino acid identity (AAI) and in
silico Genome-to-Genome Hybridization value (GGDH)
were calculated between the genomes of strain LM 4–2
and other 30 B. subtilis species that have been completed
sequenced [35–40]. Results show that strain LM 4–2
shares high ANI (>95 %, 23 of total 30), AAI (>95 %, 23 of
total 30) and GGDH value (>70 %, 24 of total 30) with
most of the complete sequenced B. subtilis species, and
highest ANI (99.00 %), AAI (99.13 %) and GGDH
value (92.20 % ± 1.85) with B. subtilis strain TO-A
JPC (Additional file 1: Table S1).

Genome sequencing information
Genome project history
Bacillus subtilis LM 4–2 was selected for sequencing due
to its strong resistance to molybdate and potential
utilization in bioremediation of molybdate-polluted areas.
The genome sequence was deposited in GenBank under
accession number CP011101 and the genome project was
deposited in the Genomes on Line Database [42] under
Gp0112736. Genome sequencing and annotation were per-
formed by Chinese National Human Genome Center at
Shanghai. A summary of the project was given in Table 2.

Growth conditions and genomic DNA preparation
Bacillus subtilis LM 4–2 was inoculated in 200 mL R2A
medium and cultivated for 8 h at 30 °C in a shaker with
speed of 200 rpm. 1.2 g of harvested cells was suspended
in 5 mL TE (pH8.0) with 10 mg/mL lysozymeat 30 °C
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Fig. 2 Neighbor-Joining Phylogenetic tree was built with MEGA 5 based on 16S rRNAsequences [41]. The strains and their corresponding GenBank
accession numbers for 16S rDNA sequences are: a Bacillus thioparans BMP-1 (DQ371431); b Bacillus selenatarsenatis (AB262082); c Bacillus methanolicus
NCIMB 13113 (AB112727); d Bacillus azotoformans NBRC 15712 (AB363732); e Bacillus indicus Sd/3 (AJ583158); f Bacillus amyloliquefaciens BCRC 11601
(NR_116022); g Bacillus subtilis 168 (NC_000964); h Bacillus subtilis PPL-SC9 (KM226924); i Bacillus cohnii DSM 6307 (X76437); j Bacillus cereus ATCC 14579
(NR_074540); k Bacillus arsenicus con a/3 (AJ606700); l Bacillus arseniciselenatis E1H (AF064705); m Bacillus macyae JMM-4 (AY032601); n Bacillus beveridgei
MLTeJB (FJ825145); o Bacillus selenitireducens MLS10 (CP001791)

Table 2 Genome sequencing project information

MIGS ID Property Term

MIGS 31 Finishing quality Complete

MIGS-28 Libraries used Two libraries, 20 Kb PacBio
library, 2 × 150 bpllumina library

MIGS 29 Sequencing platforms PacBio RS II, Illumina Hi-Seq

MIGS 31.2 Fold coverage 213-and 409-fold

MIGS 30 Assemblers HGAP, bowtie2

MIGS 32 Gene calling method Glimmer 3.02 and GeneMark

Locus Tag BsLM

Genbank ID CP011101

GenBank Date of Release April 23, 2015

GOLD ID Gp0112736

BIOPROJECT PRJNA277611

MIGS 13 Source Material Identifier CGMCC 1.15213

Project relevance Environmental, Bioremediation
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for 4 h. After centrifugation (12,000 rpm) for 10 min, gen-
omic DNA was extracted by phenol-chloroform methods
as described previously [43]. DNA was dissolved in 2 mL
sterilized deionized water with a final concentration of
12.67 μg/μL and 2.04 of OD260/OD280 ratio determined
by NanoDrop 2000 spectrophotometer (Thermo Scientific,
USA). The genomic DNA was stored in −20 °C freezer.

Genome sequencing and assembly
The genome of Bacillus subtilis LM 4–2 was sequenced by
a dual sequencing approach that using a combination of
PacBio RS II and Genome Analyzer IIx sequence platforms.
Approximately 121,583 PacBio and 1637 million Illumina
reads were generated from PacBio platform and the
Illumina platform (2 × 150 bp paired-end sequencing) with
average sequence coverage of 213-and 409-fold.Sequence
reads from the PacBio RS II were assembled by using
hierarchical genome-assembly process assembler and
finally only one self-cycled supper contig was generated.
The Illumina reads were quality trimmed with the CLC
Genomics Workbench and then utilized for error correc-
tion of the PacBio reads by using bowtie2 (version 2.1.0)
software [44].

Table 3 Genome statistics

Attribute Value % of Total

Genome size (bp) 4,069,266 100.00

DNA coding (bp) 3,596,010 88.37

DNA G + C (bp) 1,811,637 44.52

Total genes 4265 100.00

Protein coding genes 4149 97.28

RNA genes 116 2.72

rRNA operons 10 0.23

Genes with function prediction 2742 64.29

Genes assigned to COGs 3111 72.94

Genes with Pfam domains 3656 85.72

Genes with signal peptides 541 12.68

Genes with transmembrane helices 778 18.24

CRISPR repeats 0 0

Fig. 3 Graphic representation of circular map of the chromosome of strain LM 4–2.The map was generated with the DNAPlotter [54]. From outside to the
center: the first two outer circles represent the positions of genes in the chromosome (Circle 1: plus strand, Circle 2: minus strand). Circle 3 represents tRNA
genes (blue), Circle 4 represents G + C content, and Circle 5 represents GC skew
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Genome annotation
The Glimmer 3.02 and GeneMark programs were used to
predict the positions of open reading frames [45, 46]. Pro-
tein function was predicted by the following methods: 1)
homology searches in the GenBank and UniProt protein
database [47]; 2) function assignment searches in CDD
database [48]; and 3) domain or motif searches in the
Pfam databases [49]. The KEGG database was used to
reconstruct metabolic pathways [50]. Ribosomal RNAs
and Transfer RNAs were predicted by using RNAmmer
and tRNAscan-SE programs [51, 52]. Transporters were
predicted by searching the TCDB database using BLASTP
program [27, 53] with expectation value lower than 1e-05.

Genome properties
The complete strain LM 4–2 genome was composed of
a circular 4,069,266 bp chromosome with an overall
43.83 % G + C content. Four thousand one hundred
forty-nine ORFs, 10 sets of rRNA operons, and 84
tRNAs were predicted in the LM 4–2 genome (Table 3
and Fig. 3). Two thousand seven hundred forty-two of
total 4149 predicted ORFs could be functional assign-
ment, 1415 were annotated as hypothetical proteins.
When analyzed for biological roles according to COG
categories, amino acid transport and metabolism pro-
teins accounted for the largest percent (7.18 %) of all
functionally assigned proteins, followed by carbohydrate
transport and metabolism proteins (6.89 %), and Tran-
scription proteins (6.43 %). There are 687 transporter-
coding and 116 redox protein-coding genes were identi-
fied in the LM 4–2 genome. The distribution of genes
into COGs functional categories is presented in Table 4.

Conclusions
Molybdenum pollution has been reported in water and
soils all around the world [55]. Some Mo-resistance
bacteria can be used to immobilize soluble molyb-
denum toinsoluble formsalong with reducing the tox-
icity. In this study we presented the complete genome
sequence of Bacillus subtilis LM 4–2, which was iso-
lated from a molybdenum mine in Luoyang city. Due to
its strong resistance to molybdate and potential utilization
in bioremediation of molybdate-polluted area, we sequence
the genome and try to identify the possible molecular
mechanism of molybdenum-resistance. Genomic analysis
of strain LM 4–2 revealed 687 transporter-coding and 116
redox protein-coding genes were separated in the genome.
Three genome islands were identified in the strain LM 4–2
genome, covering 2.71 % of the whole genome. Three gene
clusters were involved in the non-ribosomal synthesis of
lipopeptides, such as surfactin, fengycin, and dipeptide
bacilysin. Additionally, one gene clusters for subtilosin A
synthesis and one gene clusters for polyketide synthesis.
No CRISPRs were identified in the strain LM 4–2 genome.

The complete genome sequence of strain LM 4–2
will facilitate functional genomics to elucidate the
molecular mechanisms that underlie molybdenum-
resistance and it may facilitate the bioremediation of
molybdenum-contaminated areas.

Additional file

Additional file 1: Table S1. The results of ANI, AAI and GGDH value
between genomes of strain LM 4-2 and other 30 complete sequenced
B. subtilis species. (DOC 58 kb)
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Table 4 Number of genes associated with general COG
functional categoriesa

Code Value % age Description

J 149 3.59 Translation, ribosomal structure and biogenesis

A 0 0.00 RNA processing and modification

K 267 6.44 Transcription

L 114 2.75 Replication, recombination and repair

B 1 0.02 Chromatin structure and dynamics

D 36 0.87 Cell cycle control, Cell division, chromosome
partitioning

V 54 1.30 Defense mechanisms

T 127 3.06 Signal transduction mechanisms

M 191 4.60 Cell wall/membrane biogenesis

N 60 1.45 Cell motility

U 25 0.60 Intracellular trafficking and secretion

O 101 2.43 Posttranslational modification, protein turnover,
chaperones

C 166 4.00 Energy production and conversion

G 286 6.89 Carbohydrate transport and metabolism

E 298 7.18 Amino acid transport and metabolism

F 82 1.98 Nucleotide transport and metabolism

H 114 2.75 Coenzyme transport and metabolism

I 89 2.14 Lipid transport and metabolism

P 168 4.05 Inorganic ion transport and metabolism

Q 72 1.74 Secondary metabolites biosynthesis, transport
and catabolism

R 364 8.77 General function prediction only

S 347 8.36 Function unknown

- 1039 25.04 Not in COGs
aThe total is based on the total number of protein coding genes in the
annotated genome
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